
Technical white paper

2011 top cyber security risks
report

Table of contents

Contributors ... 2

Overview... 3

Vulnerability trends ... 4
Decline in commercial vulnerabilities creates a false sense of security .. 4
Changing vulnerability disclosure trends affect discovery and reporting through traditional channels .. 5
Web applications are still a significant risk to the enterprise .. 8
Vulnerabilities are rising in nontraditional enterprise infrastructures ... 12

Attack trends .. 14
The motivations behind security attacks .. 14
A breakdown of threat data ... 16
An in-depth look at attack techniques .. 18
Web 2.0 applications ... 25

Attack techniques ... 31
Exploit kits over the past year ... 31
Blackhole exploit kit .. 31
Blackhole obfuscation .. 32
Obfuscation ... 32
JavaScript .. 33

Botnets .. 35
Introduction .. 35
Botnet event statistics ... 35
Botnets and C&C–enabled Trojans by family .. 38

Mitigation thoughts ... 43

Glossary .. 44

2

Contributors
Producing the 2011 top cyber security risks report is a collaborative effort among HP DVLabs and other HP teams,
such as HP Fortify on Demand and the HP Web Security Research Group. We would like to sincerely thank the Open
Source Vulnerability Database (OSVDB) for allowing print rights to its data in this report. For information on how you
can help OSVDB:

https://osvdb.org/account/signup

http://osvdb.org/support

Contributor Title

Linda Davis Technical Writer, HP DVLabs

Will Gragido Senior Manager, Advanced Cyber Threat Intelligence Solutions

Brian Hein Technology Architect, HP Enterprise Security Products

Adam Hils Senior Product Manager, HP Fortify

Dan Holden Director, HP DVLabs

Prajakta Jagdale Principal Security Researcher, HP Web Security Research Group

Jason Jones Advanced Security Intelligence Engineer, HP DVLabs

Jennifer Lake Product Marketing, HP DVLabs

Jason Lancaster Technical Director, HP Enterprise Security Products

Mark Painter Product Marketing Manager, HP Fortify

Young Park Lead FOD Operator, HP Fortify on Demand

John Pirc Director, Product Management, HP Enterprise Security Products

Erica Quinlan TAM Manager, HP Fortify on Demand

Joe Sechman Manager, HP Web Security Research Group

Nidhi Shah Principal Security Researcher, HP Web Security Research Group

Craig Smith TaaS Operations Manager, HP Fortify on Demand

Michael Thuma Technical Account Manager

Jewel Timpe Business Operations, HP DVLabs

Chaoting Xuan Security Research Engineer, HP Web Security Research Group

https://osvdb.org/account/signup�
http://osvdb.org/support�

3

Overview
Enterprise organizations have been under security attacks for the past decade, but the security events in 2011 have
created a ripple effect that will be felt for years to come and will actually start to shift the way enterprise
organizations view security. For example, 2011 saw a significant increase in activity from “hacktivist” groups
Anonymous and Lulz Security (LulzSec). The motivation for these groups’ organized, systematic attacks on businesses
or individuals—retaliation for perceived wrongdoing—brings new visibility to a security threat that has been looming
for years and highlights a new era of security risk that must be addressed. In addition, highly publicized attacks on
major corporations such as Sony, RSA, and the United States Postal Service demonstrated the significant financial loss
that can result from a vulnerable system.

Because unplugging the business from the Internet is not a viable security option, the question becomes: What is the
best way to minimize risk to the most critical assets of the organization without interrupting or impeding business
operations? Prioritization of assets and risk is essential, but so is prioritizing how and where to deploy security
protection.

In the 2011 top cyber security risks report, HP Enterprise Security provides a broad view of the vulnerability threat
landscape, as well as in-depth research and analysis on security attacks and trends. The aim of this report is to
highlight the biggest risks that enterprise organizations face today—and to help prioritize mitigation strategies. Key
findings from this report include the following:

• Continued decline of new, disclosed vulnerabilities in commercial applications
The report notes the decline in commercial vulnerability reporting, and it discusses the key trends in the vulnerability
disclosure market that may be hiding a deeper issue. The report also highlights the growing market for private
sharing of vulnerabilities, the increased expertise required to uncover complex vulnerabilities, and the price these
can fetch in various markets. Data from HP Fortify will also highlight the increasing number of vulnerabilities that
are being discovered in custom applications—vulnerabilities that can be devastating to the security posture of an
organization.

• Changes in attack motivation are increasing security risk
While security attackers have always sought glory and/or financial gain from their activities, the formation of
hacktivist groups, like Anonymous, has added not only a purpose behind security attacks, but a level of
organization as well. This shift in motivation and subsequent organization has given rise to newer and more severe
security attacks. This report will highlight the motivations of today’s security attack community—and the implications
for security defense techniques.

• Increase in the number of attacks against a “smaller” set of known vulnerabilities
Despite the shrinking number of known vulnerabilities in commercial applications, the report will use real data—
pulled from the HP TippingPoint Intrusion Prevention System (IPS) and HP Fortify—to highlight an increase in severe
attacks against both client/server and Web applications. The data is broken down by attacks, vulnerability
category, source information, and severity to provide a snapshot of the attack landscape. This section also features
an actual case study of the Web application risks at one large corporation.

• Improved techniques for executing security attacks
While many targeted attacks leverage zero-day vulnerabilities, the average cyber criminal generally exploits
existing vulnerabilities. Data from the report breaks down several techniques, including obfuscation, used to
successfully exploit existing vulnerabilities. The report also includes an in-depth look at the Blackhole exploit toolkit,
which uses many of the techniques highlighted.

Information in this report originates from various sources, allowing HP Enterprise Security to obtain a broad set of
data from which to correlate meaningful findings. These sources include:

• Vulnerability information from the Open Source Vulnerability Database (OSVDB) and the HP DVLabs Zero Day
Initiative (ZDI)

• Web application data from the HP Fortify Web Security Research Group and Fortify on Demand

• Attack information from a worldwide network of HP TippingPoint Intrusion Prevention Systems

• Exploit analysis from HP DVLabs

4

Vulnerability trends
Understanding security risk begins with knowing where weaknesses exist in an enterprise infrastructure. Vulnerabilities
exist at every level of the enterprise infrastructure—at the perimeter, in the core, and even in some of the less
traditional areas such as mobile and virtual environments. These vulnerabilities are the gateway that malicious cyber
actors use to introduce attacks that can steal or alter data, shut down systems, or access confidential information.

This section of the report uses data from the Open Source Vulnerability Database (OSVDB), HP DVLabs Zero Day
Initiative (ZDI), and the HP Web Security Research Group to demonstrate the following vulnerability trends:

• Decline in commercial vulnerabilities creates a false sense of security.
This section presents the numbers of new vulnerabilities being reported in commercial applications. It uses OSVDB
data to provide a snapshot of what is happening in the world of vulnerabilities—notably a downward trend in
numbers of new vulnerabilities being reported.

• Changing vulnerability disclosure trends affect discovery and reporting through traditional channels.
This section delves further into the market for vulnerability disclosure to highlight why the numbers of new disclosed
vulnerabilities are declining.

• Web application vulnerabilities are still a significant risk to the enterprise.
This section provides another piece of the vulnerability landscape, highlighting vulnerabilities present in custom-
developed Web applications. This section uses data from OSVDB and HP Fortify to demonstrate the type and
frequency of vulnerabilities that exist in Web applications.

• Vulnerabilities are rising in nontraditional enterprise infrastructures.
This final section provides a quick overview of the other areas of the vulnerability landscape. It touches on the
vulnerabilities—and risks—present in virtual infrastructure as well as SCADA systems. It also includes data from the
Web Security Research Group to provide a snapshot of the mobile vulnerabilities that are beginning to have an
impact in the enterprise.

Decline in commercial vulnerabilities creates a false sense of security
Based on data from the OSVDB, the total number of new vulnerabilities reported during 2011 is about 19.5 percent
lower than the number of new vulnerabilities reported in 2010. During 2011, OSVDB cataloged 6,843 reported
vulnerabilities in Internet-based systems, applications, and other computing tools, compared to 8,502 cataloged in
2010 (see Figure 1).

Figure 1: Disclosed vulnerabilities measured by OSVDB, 2000–2011

5

In the year-by-year view of OSVDB data, it is clear that vulnerability reporting peaked in 2006 and has been in a
slow decline ever since. This decline in disclosure of new vulnerabilities doesn’t mean that vulnerabilities don’t exist or
that software is suddenly secure.

Rather it is indicative of a change in the vulnerability landscape—including how these vulnerabilities are being
discovered, how they are disclosed, and where they exist. The following sections will use OSVDB, ZDI, and HP Web
Security Research Group data to illustrate potential reasons behind this shift.

Changing vulnerability disclosure trends affect discovery and reporting
through traditional channels
To understand why vulnerability reporting is down, it is important to look at the trends impacting discovery and
disclosure of vulnerability information.

Vulnerability information can be sold through a number of different outlets, including public programs such as
HP DVLabs ZDI, consulting organizations, or the black market.

The OSVDB data provides an excellent snapshot of the vulnerability landscape, particularly for common computing
applications. However, due to the nature of vulnerability reporting, OSVDB can only count vulnerabilities being
disclosed publicly or submitted directly to the database by individuals.

As consulting organizations—such as VUPEN—become more popular, significant numbers of vulnerabilities are being
discovered but only disclosed to private clients. This practice leaves a significant quantity of vulnerabilities uncounted.

Improved software ups the ante for vulnerability reporting
Further complicating the vulnerability question is the complexity of software today. For the past several years,
software vendors have been improving their products and adding features into their code to thwart the unauthorized
discovery and exploitation of their products. These steps have not only helped close a number of holes in commercial
products, but also made vulnerabilities more difficult to discover.

The increasing difficulty of discovering vulnerabilities, combined with the market value of bugs with a high CVSS
rating (8 to 10), increases the market value for vulnerabilities across the board. This increase indicates two things:

• Security researchers need to have extensive expertise in a specific application set in order to find vulnerabilities.

• It is more worthwhile to spend extra time uncovering the severe vulnerabilities that fetch a higher market price.

6

The following graphs depict the way in which reporting severe vulnerabilities has changed over the years.

Figure 2: Vulnerability severity landscape using OSVDB data, 2000–2011

Figure 2 uses data from OSVDB to break down the vulnerabilities by year based on CVSS score. It should be noted
that OSVDB does not require a CVSS score to report vulnerabilities, so the severity ratings only represent a subset of
all reported vulnerabilities, but there is still some interesting information to take away from this.

High-severity vulnerabilities (CVSS 8 to 10) make up 24 percent of the total vulnerabilities in 2011. Vulnerabilities
with a CVSS score higher than 7 can, in theory, result in a remote code execution. In other words, an attacker can
exploit that vulnerability and gain total control of the system.

Uncovering a remote code execution vulnerability requires specialized knowledge of the application and system, so it
is no surprise that these comprise a small percentage of the vulnerabilities disclosed. However, what is interesting is
that the number of severe vulnerabilities is growing at a faster rate than the other levels of vulnerabilities. Figure 3
highlights how the percentage of high-severity vulnerabilities has increased in the past 10 years.

Figure 3: Severity of OSVDB vulnerabilities broken out over 10 years

7

In the peak year for vulnerability disclosure (2006), mid-level severity vulnerabilities (CVSS 5 to 7) made up a bulk of
the disclosures. This was about the time that fuzzing tools became mainstream and researchers began finding some of
the more common, easier-to-find vulnerabilities—and many of these fell into the mid-level in terms of exploitability.
This number has since dropped sharply, in part because software vendors have made great strides in improving the
security of their product code and eliminating old vulnerabilities.

The expertise and time required to uncover and prove the exploitability of very severe vulnerabilities demands a
commensurately high payment. Because it is worth reseachers’ effort to spend more time uncovering these very severe
vulnerabilities, fewer bugs are being discovered overall. In addition, because very severe vulnerabilities often capture
a higher price on the black or gray market, it is plausible that many of these may not be reported through the public
channels measured by OSVDB.

ZDI information
The Zero Day Initiative (ZDI) is a program managed by HP DVLabs that purchases vulnerability information from
security researchers and provides it free of charge to the affected vendor. For the most part, ZDI purchases only very
severe vulnerability information (CVSS greater than 7), so it provides a broader look at these vulnerabilities and how
they affect the enterprise.

ZDI was founded by HP TippingPoint in 2005 to reward security researchers for responsibly disclosing vulnerabilities.
The program is designed such that researchers provide HP TippingPoint with exclusive information about previously
un-patched vulnerabilities they have discovered. HP DVLabs validates each vulnerability and works with the affected
vendor until the vulnerability is patched. At the same time, HP DVLabs develops a security solution that provides pre-
emptive protection for HP’s customers even before the application vendor distributes a fix for the vulnerability.

Access to ZDI data not only adds to the overall view of how many vulnerabilities are reported, but also begins to
paint a picture of where these vulnerabilities exist.

Figure 4 highlights the top 10 vulnerabilities reported through ZDI in 2011. Browsers and browser plug-ins like
ShockWave and Java continue to lead in terms of the number of vulnerabilities disclosed. This supports the theory that
while software may be getting more secure, the applications running on top of them are introducing vulnerabilities.

Figure 4: Top 10 vulnerabilities disclosed through ZDI in 2011

The same is also true historically. In Figure 5, which shows ZDI disclosed vulnerabilities from 2005 through 2011, the
number of QuickTime vulnerabilities jumps significantly, as do the vulnerabilities in Web browsers such as Internet
Explorer and Firefox.

8

Figure 5: Top 10 vulnerabilities disclosed through ZDI 2005–2011

The next section takes a closer look at vulnerabilities in commercial applications broken down by category.

Web applications are still a significant risk to the enterprise
Vulnerabilities can exist anywhere in the application—in the underlying software code itself, in the connections to
other systems, and even in the plug-ins or add-ons that users deploy. Given the number of applications in
circulation—both commercially available products and custom-developed apps—the opportunity for vulnerabilities to
exist is high.

Figure 6 highlights the six most common vulnerability categories reported in OSVDB; all are exploitable remotely.

Figure 6: Most common vulnerabilities in OSVDB, broken down by category, 2000–2011

It is worth noting that four of these six vulnerabilities—SQL injection, cross-site scripting, cross-site request forgery, and
remote file include—can be exclusively exploited via the Web. Other types of vulnerabilities are becoming more
popular as well, including privilege escalation, memory corruption, and authentication bypass.

As shown in Figure 7, the four types of Web application vulnerabilities described above account for 36 percent of
overall vulnerabilities by category, as reported through OSVDB.

9

Figure 7: Breakdown of OSVDB vulnerabilities by category for 2011

As shown in Figure 8, the number of Web application vulnerabilities peaked in 2006, and has since been slowly
declining—at least in commercially available applications and components.

Figure 8: Year-by-year view of OSVDB vulnerabilities, broken down by type

Figure 9 delves into this subject further, mapping out the individual vulnerabilities that make up the Web application
category. It is clear that cross-site scripting vulnerabilities continue to have a strong presence in Web applications.

10

Figure 9: Categories of vulnerabilities present in Web applications based on OSVDB data, 2009–2011

Expanding the vulnerability risk surface—custom Web apps
Thus far, this report has primarily focused on vulnerability disclosure, which may or may not reflect the complete
picture of vulnerability trends unfolding on the Internet.

The HP Web Security Research Group, in conjunction with the HP Fortify on Demand professional services
organization, has gathered and analyzed the results from thousands of assessments to paint a more complete picture
of the current state of Web application security.

Web application vulnerabilities
This set of data includes results from both dynamic and static testing. This analysis comes from many different
companies, includes multiple industries, and should serve as a representative cross-sample of Web application
security practices.

Static analysis: Static (or code) analysis finds security vulnerabilities by examining software without executing it.

For this sample set, the static results cover 359 unique applications. The results show that Web applications are
vulnerable on multiple levels:

• 54 percent were vulnerable to reflected cross-site scripting. 40.66 percent were susceptible to persistent cross-site
scripting. Persistent cross-site scripting occurs when the attack is stored on the target server in some form, such as in
a database or on a submission to a bulletin board or visitor log. The victim will retrieve and execute the attack
code in a browser when a request is made for the stored information.

• 86.35 percent were vulnerable to injection flaws. This category includes SQL injection and any other occurrences
of an application accepting un-trusted data as part of a command or query.

• 77.16 percent were susceptible to insecure direct object reference vulnerabilities. This happens when a developer
inadvertently reveals a reference to an internal implementation object, like a file or database key. Because there is
no access control, these vulnerabilities can be often be leveraged by malicious users to gain unintended access to
data.

• 93.87 percent were vulnerable to information leakage and improper error handling. While a specific piece of
information might not seem important, it might be the one that allows an attacker to escalate a methodology and
conduct a more devastating attack. At the end of the day, successful hacking is 99 percent information gathering
and reconnaissance.

• 60.72 percent were vulnerable to broken authentication and session management issues. These issues can
potentially be leveraged by malicious users to gain unintended application access.

• 87.74 percent were susceptible to insecure cryptographic storage. The large majority of applications in this sample
set did not properly encrypt data, potentially allowing a breach in the confidentiality of the information.

11

Web application risk: a case study
Company profile:
Large (more than 100,000 employees) multinational organization with revenues exceeding US$80 billion for FY2011

This company has an active security program in place. The findings indicate how much diligence it takes to fully manage
application security risks. The following shows the results of a comprehensive scan of one of the organization’s Web
application—meaning all of the sites and pages associated with that application.

The results:
• 74 percent of the sites within the application contained cross-site scripting vulnerabilities. There were more than 56,000

instances across 1,419 unique applications.
• 38 percent of the pages on the site contained a ”mixed scheme” unencrypted login form where information from an HTTP

page was posted to an HTTPS page, or vice versa.
• Another 29.8 percent were vulnerable to logins sent over an unencrypted connection. This means that the form did not

utilize SSL.
• 15.1 percent were vulnerable to some form of SQL injection. SQL injection can be particularly nasty, and in some

circumstances it can be used to compromise a system.
• 6.1 percent of the sites contained a blind SQL injection vulnerability.
• 10.7 percent of the sites revealed information beneficial to an attacker via database server error messages.
• 17.17 percent included backup files. At a minimum, an attacker retrieving such a file would have all the information it

contained, whether that be database calls, the format of parameters accepted by the application, or simply information
regarding the architectural structure of the site. Often, old files are renamed with an extension such as .bak to distinguish
them from production files. The source code for old files that have been renamed in this manner can often be retrieved.

12

Dynamic analysis: Dynamic analysis works by attacking the application under test using techniques like those a
hacker might employ. It tries many attack scenarios and monitors the application’s response in order to diagnose
vulnerabilities. For this sample set, 2,714 unique applications were tested. The following is a high-level overview of
the types of vulnerabilities discovered:

• 52.35 percent were vulnerable to reflected cross-site scripting. Insecure communications vulnerabilities affected
66.87 percent of the applications. Network traffic encryption is fundamental to protecting sensitive
communications.

• 15 percent were vulnerable to information leakage and improper error handling. Information leakage covers
attacks designed to acquire system specific information about a website. As stated earlier, 99 percent of hacking is
information gathering, so this is not insignificant.

• Only 12.3 percent were vulnerable to injection flaws such as SQL injection. However, one SQL injection
vulnerability can potentially be exploited to compromise an application, so the numbers are not reassuring.

Conclusions: Overall, these sets of data show that coding mistakes that lead to security attacks are widespread. The
number of security attacks on Web applications varies from year to year, but as reported here—and on the news—
successful attacks are becoming much more dangerous to the business. Simple site defacement is no longer the norm.
Instead, today’s attacks are about stealing data for as long a period of time as possible without being detected or
causing as much business interruption and brand damage as possible.

Multiple data sets confirm that cross-site scripting is a widespread and prevalent issue. As will be shown later, the
Microsoft® Anti XSS filter is not significantly reducing the problem. Basic security mistakes such as information
leakage and insecure communications are still being made at all organization size levels. Measures should be taken
to ensure that information potentially important to attackers is not included in the application. Ultimately, the solution
is for security to be ”baked in” to the development process, not brushed on.

Vulnerabilities are rising in nontraditional enterprise infrastructures
Figure 10 defines legacy infrastructure as that of the physical world, the typical server/client model. Historically this
type of infrastructure has been the primary target for attackers, but as infrastructure matures and changes with new
technology advancements, vulnerabilities introduce additional risk.

Figure 10: Overview of the enterprise infrastructures

As infrastructures evolve, so does the vulnerability landscape—to an extent. Let’s look at each group individually:

SCADA, VoIP: the forgotten risk
The figure above uses the term “forgotten infrastructure” to describe SCADA and VoIP simply because, while there
was much hype about VoIP security during the mid-2000s, there hasn’t been much attacker activity in this area
outside of carrier fraud. Even in the case of espionage, there are likely easier and potentially more rewarding ways
of carrying out such activity than targeting the phone system.

SCADA is the ultimate example of a forgotten infrastructure. Many in the industry had stated that it would take a
“digital 9/11” event to generate interest and investment in this area, and it seems that in Stuxnet, such an event

13

finally occurred. The Stuxnet event led to a more serious discussion of what the SCADA risk really is, and what can
potentially be done to combat it. Stuxnet also added the concept of “cyber war” to the vulnerability landscape—and
brought about discussion of how SCADA might change in the future.

Newer infrastructure risks: virtual, cloud
As businesses adopt newer infrastructures such as virtualization, cloud, and mobile, the risk landscape is shifting.
Given its relative newness, very little hard data is available on the threats posed by virtual systems—though it should
be noted that the applications within these virtual and cloud environments are still susceptible to the same risks as
their traditional counterparts.

Assessing the mobile risk
As smartphones and mobile devices outpace PCs, this infrastructure will have a greater impact on the security posture
of the organization. In order to understand what is happening in the emerging attack vector of mobile applications,
HP performed deep analysis of a number of them. Key findings include the following:

• Mobile application security is still in its infancy.
The device-centric approach that antivirus companies sold five years ago (basically “drop an antivirus solution on
every device”) is outdated and misses all attack vectors but certain categories of malware.

• A minimal approach is inadequate.
Organizations are becoming aware of the massively escalating threats inherent in a “bring your own device to
work” culture and are concerned about mobile security, but are not yet sure how best to approach it. For instance,
over half of the tested applications failed to properly encrypt data. The data stream could potentially be accessed
by other applications. Applications must be protected from other applications stored on the device as much as from
outside attackers.

• Mobile applications are different, but the same.
They use different frameworks and Web services than their desktop counterparts, but mobile applications are
susceptible to the same types of vulnerabilities as normal, non-mobile applications. We found multiple instances of
cross-site scripting, easily broken authentication, and information leakage across the sample set.

• Given the realities of the modern IT landscape, the information leakage problem is especially widespread and
pernicious.
Over half of the mobile applications tested displayed information leakage behavior. The increasing demand for
information from the mobile workforce—combined with increasingly pervasive cloud services and a wave of
unmanaged consumer-grade devices on the corporate network—presents a noteworthy challenge for many
organizations. Corporate data is being housed inside and outside the enterprise, as well as in mobile user devices.

• In addition to the broader information leakage problems presented by changing use cases and platforms, mobile
applications are designed to leak data.
During the course of testing, it was noted that many applications will leak various types of information from the
device financial, personal, location, demographic, and even contact list data—and transmit it to third parties
without permission. One very prominent free mobile phone gaming application monetizes itself by selling contact
lists that often include customers, colleagues, and partners. Combine personal devices used for business purposes
with the wrong kind of mobile application, and you get critical data made available to anyone willing to pay for it.

• The number of attack types being conducted against mobile applications is on the rise.
Traditional man-in-the-middle attacks are being joined by newer techniques, such as mobile browser exploits that
produce a remote shell through which an attacker can remotely run commands on a phone’s OS. Also, multi-vector
compound attacks using the Web browser, SMS, and email are appearing more frequently.

• No platform is safe.
Google Android’s relatively open architecture has made it a target for innovative, profit-driven attackers. For
example, in March 2012 a new self-updating, remote-controlled form of Trojan malware appeared that steals
banking data and targets devices running Google’s Android platform. Closed platforms such as iOS, with its
locked-down App Store, are harder to exploit, but there have nonetheless been successful exploits. In late 2011,
one security researcher planted a sleeper application in the App Store that could phone home to a remote
computer, which would then download unapproved commands and execute them, potentially leading to multiple
privacy and security issues.

14

Attack trends
The preceding section provided a view into the vulnerability landscape—specifically where and how applications can
be compromised. Knowing where the vulnerabilities exist is one component of threat prevention. Identifying the
attacks exploiting those vulnerabilities and the frequency of attacks provides a greater understanding of enterprise
risk. Attack data from this section is broken out into the following areas.

• The motivations behind security attacks
In order to truly understand the risks associated with security attacks, it is critical to understand the motivations of
the cyber actors executing those events. This section breaks down the variables that motivate attackers, including
financial incentive and glory-seeking. This section also includes a brief look into the hacktivist group Anonymous.

• A breakdown of threat data
The data in this section is obtained from a network of HP TippingPoint Intrusion Prevention System (IPS) devices and
the HP DVLabs network of “honeypots.” Included is information on the frequency and types of attacks occurring in
the enterprise. This information is important to understanding the risk severity of particular vulnerabilities.

• An in-depth look at attack techniques
This section takes a look at data from the previous section and provides additional analysis to show new techniques
for executing attacks. Included are information on obfuscation and exploit toolkits and an in-depth look at the
Blackhole toolkit, which utilizes both techniques.

• Botnets: the universal threat
Botnets are a continued threat to enterprise at multiple points. There are security attacks designed specifically to
grow a system of compromised hosts—and compromised systems can be bought and sold as a part of exploit
toolkits to distribute attacks. This section uses data from HP DVLabs to highlight several growing botnet families.

The motivations behind security attacks
It is difficult to ascertain a clear motivation for every attack because so many variables are at play—variables that,
when leveraged aptly, cloud the waters of attribution more than they would naturally. Though 2011 has been noted
by many as the “Year of Anonymous,” in fact more than just hacktivists were at work launching attacks,
compromising hosts, and breaching enterprises around the world. Motivations and agendas vary. Individuals and
groups may subscribe to singular or multiple agendas, demonstrating diverse motivation and intent, while maintaining
what would otherwise be considered conflicting loyalty to various purposes or organizations. The fact remains that in
2011, as in many previous years, attacks have been launched in a variety of ways by individuals and groups for
diverse purposes. The greatest motivator for attacks over the last decade has been profit. However, state-sponsored
espionage, state-sponsored industrial espionage, and agenda-driven activism are also very high on the list—if not on
the same level—of motivations behind today’s modern, sophisticated attacks.

The hacktivist group Anonymous made headlines throughout 2011 with attacks against organizations and individuals
alike. In the most recent large attack by Anonymous (its January 2012 response to the shutdown of
Megaupload.com), many corporations and organizations associated with the recording and movie industries, as well
as government agencies, were targeted1. These attacks focused primarily on voluntary group-based distributed denial
of service (DDoS), rather than on botnet-driven DDoS. The Anonnews website reported that attack as the largest to
date by Anonymous, with 5,635 participants2

The motives and agendas vary depending on the individual or group regardless of state or non-state sponsorship.
Figure 11 maps out the motivations for each cyber actor.

.

1 http://www.us-cert.gov/cas/techalerts/TA12-024A.html
2 https://twitter.com/#!/YourAnonNews/status/160135858895335424

15

Figure 11: Motivations of cyber attackers

The motives for attack include theft of money, intellectual property, and state secrets, to name a few. Religious and
geopolitical beliefs are additional motives that can lead to non-kinetic or kinetic cyber attacks. Non-kinetic cyber
attacks—for example, DDoS attacks—do not destroy the target, and these happen every day. Conversely, kinetic-
based cyber attacks, such as Stuxnet, are specifically intended to cause damage to a physical infrastructure. The only
actors sufficiently funded to carry out kinetic cyber attacks are state-sponsored entities and terrorist organizations.
However, now that a decompiled version of the Stuxnet source code has been made available, it’s plausible that an
individual or group could execute another Stuxnet-like operation.

In the beginning of this section, we discussed motives at a high level, focusing on hacktivism with Anonymous and
LulzSec.3 According to Verizon’s 2012 Data Breach Investigative Report (DBIR), hacktivism surpassed organized
crime in the amount of data of stolen. More alarming is that approximately 50 percent of the corporations that were
attacked had advance notice of the pending attack because they were publicly announced as targets. Often
overlooked is how advancements in technology have created a low barrier of entry for an individual or group to
participate in illegal online behavior. The low cost of a laptop coupled with Internet access and access to freeware
tools has made it very easy for someone who believes in a cause like Anonymous to join the fight. For all that is
known about Anonymous, far more is not known, because it is such a dynamic group. There is conflicting evidence of
centralized leadership4

Anonymous takes hacktivism to new levels

, but one thing that is known is that once ideas are agreed upon, they go viral—spreading
through social media, chat rooms, Twitter, and YouTube. The rapid adoption and use of social media applications
such as Twitter will continue to be used to promote various causes and cyber campaigns, often at the expense of
private and public entities. As we will see in the subsequent sections, anonymity remains at the forefront of
considerations for these organizations and individuals. Some are more successful at leveraging it than others.

Anonymous generally uses three methods in its operations: DDoS, doxing, and website attacks.

In the first, a DDoS attack is set up and a call is put out to the Anonymous followers (Anons) of the operation. At a
designated time, these followers will use common tools pointed at a specified target to generate traffic with such
volume that the site is overwhelmed and becomes unavailable to normal users. The most common of these tools is the
low orbit ion cannon (LOIC).

In the second, individuals associated with purported misdeeds will be identified and the order given to dox5

In the third, once a target has been identified, the website that represents the target organization is hacked. More
skilled followers will target the site with the purpose of defacing it, stealing credit card or account information, and/or
deleting the site. This is often accomplished by exploiting Web application vulnerabilities such as SQL injection.

 them.
Doxing—a slang term whose origins come from documents (or docs)—means to find personally identifiable
information on targeted individuals and publish it. This information is then used to harass and intimidate the
individuals.

3 http://www.esecurityplanet.com/hackers/hacktivists-organized-crime-data-theft-cybercrime-verizon-breach-report.html
4 http://gawker.com/5783173/inside-anonymous-secret-war-room
5 http://en.wikipedia.org/wiki/Dox

16

A breakdown of threat data
In the 2011 cyber security mid-year report, the data showed that despite the decline in new vulnerabilities being
reported, the number of attacks seen against those vulnerabilities continued to grow. The data pulled from all of 2011
not only supports these initial findings, but also actually demonstrates that the outlook is much worse. In the 2011
cyber security mid-year report, all attacks tracked by the HP TippingPoint IPS were included, but we have come to the
conclusion that using high-severity attack data—attacks that exploit known vulnerabilities—gives a better
representation of the threat landscape, and all the data presented in this report reflects that. According to Figure 12,
attacks measured by the HP TippingPoint IPS more than doubled in the second half of 2011.

Figure 12: Number of attacks measured by HP TippingPoint IPS, 2009–2011

Figure 13: Total full-year attacks measured by the HP TippingPoint IPS, 2009–2011

Year by year, attacks increased but it should be noted that Web application attacks grew almost 50 percent
from 2010 to 2011. Web application attacks also made up 13 percent of the total attacks observed by the
HP TippingPoint IPS. This is an increase from 2010, during which the HP TippingPoint IPS measured Web application

17

attacks making up 10 percent of overall attacks. The next section will go into more detail about the Web application
attacks seen in 2011.

Figure 14: Total Web application attacks measured by the HP TippingPoint IPS, 2009–2011

Figure 15: Breakdown of attacks measured by the HP TippingPoint IPS, 2011

18

Web application attacks

Figure 16: Web application attacks by category measured by the IPS, 2011

SQL Injection has been in the news frequently over the last year and the data collected by HP TippingPoint IPS shows
a significant rise in attacks, as well. As 2011 progressed, SQL Injection became one of the attack techniques of
choice causing the rise in attacks shown in Figure 16. While XSS and RFI have remained relatively flat over the year,
SQL Injection saw a steady rise throughout much of 2011 and also showed a wide variance in attack technique. The
rise in SQL Injection attacks is likely due to its popularity from the Anonymous and LulzSec attacks, as well as mass
SQL Injection campaigns like Liza Moon and Lilupophilupop. Figure 17 shows a breakdown of Web application
attacks over the last three years. A sharp decrease in XSS attacks is observed from 2010 to 2011, while a sharp
increase in SQL Injection from 2010 to 2011 is seen after seeing a decrease from 2009 to 2010. RFI attacks
remained steady from 2010 to 2011.

Figure 17: Web application attacks measured by the IPS, by category, 2009–2011

An in-depth look at attack techniques
The HP Web Security Research Group examined more than 170 applications to study certain aspects of application
security more deeply than that described in earlier sections. To extend the metaphor of painting a picture, this section
is a microscopic examination of several square inches of the fabric, one section at a time.

Web application attack surface
This section examines the Web application attack surface and its impact on the application’s security risk stature. For
purposes of this study, the application attack surface refers to the surface prone to manipulation via user-controllable

19

input exposed by the application developers. As Web applications become increasingly dynamic and complex, a
greater attack surface is also exposed. A significant portion of the attack surface of a Web application comes from
parameters that accept user input. Improper or insufficient validation of user input is by far the most common cause of
Web application vulnerabilities. Developers inadvertently expose a great number of these parameters to manipulation
by malicious users.

To gauge the impact, more than 70 scans of real-world Web applications were analyzed to:

• Evaluate the attack surface exposed by an application in proportion to the crawled surface

• Determine the impact of Web application size (measured by the crawled surface) and the magnitude of its dynamic
nature (attack surface) on the vulnerable surface size

For this exercise, the attack surface is defined as all GET, POST, cookie, and header parameters. As well, the
vulnerabilities considered in the study belonged to the OWASP Top 10 2010 categories.

Figure 18 demonstrates a significant amount of the attack surface being exposed by the applications in the sample
set. Of course, the greater the attack surface, the more control the attacker can wield over the application’s behavior.
A higher percentage of attack surface in the sample applications significantly improves an attacker’s chances of
finding an exploitable vulnerability in them.

Figure 18: Vulnerable attack surface exposed in the tested applications

Of course, the mere existence of a parameter does not mean it’s vulnerable. Figure 19 shows the distribution of
vulnerable surface over the attack surface of applications in the sample set. In a majority of cases, malicious users
only need a single exploitable entry point to achieve their goals. These numbers clearly indicate that malicious users
need not work too hard to discover security holes in modern Web applications, given their average size and
architecture.

20

Figure 19: Distribution of vulnerable surface in applications in the sample

The browsing behaviors of non-malicious users differ greatly from those of attackers. Non-malicious users interact with
an application only through the interfaces made explicitly available to them by the developer. This is represented by
the crawl surface in Figure 20. Malicious users, on the other hand, are constantly looking for ways to access and
manipulate interfaces or actions to which they have no authorized access. On most occasions they succeed, primarily
because developers tend to expose more functionality than necessary and fail to implement proper security controls to
restrict access to such functionality. This is clearly evident from a comparison of the vulnerable surface with the
crawled surface that developers believe is the only accessible surface to the users.

Figure 20: Comparison of crawl surface and vulnerable surface in the sample applications

The information obtained during this analysis emphasizes the need to give security thorough consideration during
design of Web applications. Limiting client-side opportunities to control application behavior will provide an
additional layer of protection against users with malicious intent and reduce the effort required to implement security
controls.

21

New features, old exploits
Developers have always wanted an open, cross-domain browser communication policy; it just makes their lives
easier. While much cross-domain functionality already exists (<SCRIPT>, , and <IFRAME> tags, for example,
and other provisions such as JSONP and Flash), it is restrictive and does not allow for a free flow of information
across domains. HTML5 goes a long way towards creating a more open, cross-domain policy and really helps
expand the sharing between domains. This feature is called cross-origin resource sharing (CORS).

CORS allows JavaScript from a.com to read contents from b.com as long as b.com allows access to those contents
from a.com or any other domain. This is achieved with the help of two special headers:

• Origin
This header lists the domain where the request originated and is appended to the cross-domain request by the
browser.

• Access-control-allow-origin
This header contains a list of domains that are allowed to access a requested resource.

It is expected that developers will check the origin header value from the request and respond with valid contents and
an access-control-allow-origin header that has the requesting domain listed if the domain from the origin header is
allowed to access that resource.

Of course, the more access and ways of sharing data that are created, the more potential security issues arise. There
are some significant concerns with this approach. All of these can lead to a serious compromise of the site.

• If the origin header comes from a request object and even if JavaScript cannot be used to add that to request, the
header can be spoofed if the request is crafted in a program written in Java, Perl, etc.

• A response header with a “*” wild card in the response header allows the resource to be accessed from anywhere
regardless of the value of the origin header. If there is an overwhelming list of origins that are allowed access, then
the developer may opt for “*” instead of checking each origin.

• Depending on how many resources on a server are accessible via cross-domain access, developers may choose
the option of configuring this header at the directory or domain level in the server configuration.

• Even though a site might adopt a policy that all the resources on a particular subdomain of the site are accessible
from the Internet, there can be instances where the subdomain and main domain both access the same physical
location and any vulnerability in the subdomain content could lead to access of all resources on the rest of the
system.

• There might also be cases where the accessible subdomain is unintentionally used to store backup contents, which
might be enumerated from cross-domain and end up in the wrong hands.

• Resources for an intranet might be allowed to access all the resources from an internal IP space. However, when an
internal user visits a site on the Internet which contains a cross-site scripting vulnerability and exploit, that exploit
might be able to enumerate anything that is accessible on the intranet and allow access to all of those internal
resources. This can very well lead to targeted attacks.

Even though HTML5 is not yet widely adopted, five percent of the sample data contained usage of access-control-
allow-origin headers, indicating that there are sites adopting CORS for resource sharing, as shown in Figure 21.

22

Figure 21: CORS adoption

A high percentage of these sites utilized wildcards for the access-control-allow-origin header. This is surprising given
the prevalence of vulnerabilities created by the misuse of open Flash cross-domain policies in significant security
breaches.

Figure 22: CORS usage

In Figure 22, restricted full domain access indicates that *.domain.com is included in the access-control-allow-origin.
Even though it restricts the resource usage to a particular domain, it does not completely control it—and that can be
exploited if there is any vulnerability on *.domain.com.

After studying what kinds of resources were shared by these sites, the data showed all of them were sharing
JavaScripts, fonts, style sheets, and images. There is already a safe provision for sharing each one of these in a cross-
domain manner, and CORS is not required. While it is great to see the adoption of new techniques, using them
without evaluating their security impact can have dire repercussions. CORS should only be used when absolutely
necessary.

Declarative security—well intended, poorly executed
Declarative security allows Web administrators or managers who are not necessarily a site’s developers to configure
it to prevent critical attacks against them. Starting with Internet Explorer 8, Microsoft introduced three response
headers to combat specific serious security concerns. This sample set was examined to determine if declarative
security was being used correctly.

The three headers that are used by a server to help the browser perform security functions are X-XSS-protection, X-
frame-options, and X-content-type-options. Figure 23 shows the percentage of sites in the sample set that are utilizing
any of these protections, and the percentage that are using none.

23

Figure 23: Percentage of sites that use security headers

The majority of the sites still don’t take advantage of declarative security, and only 15 percent have embraced it
completely. Figure 24 shows the percentage of the sites that used each of the headers safely.

Figure 24: Percentage of sites in the sample that use security headers correctly

Values for X-frame-options include “Deny” to completely deny inclusion of the resource in the frame, or
“SAMEORIGIN” to allow a resource to be included if it originates from the same location. There is also an option of
“Allow-from origin” for this header. However, only 40 percent of the sample sites used one of these values. 60
percent end up specifying “Allow ALL”—which, from a security standpoint, is not the best option. 22 percent of the
sample sites that used the X-XSS-protection header specified its value incorrectly. The intended value for this header is
“1” with “block” set to block any reflective cross-site scripting attacks. However, specifying the value as “0”
completely disables this filter. The X-content-type-header is the most widely adapted header. Because there is only one
possible value for this, if it is implemented at all, it is implemented correctly. One possible interpretation of these
results is that developers do better if there are only a few options available for a declarative security provision.

Server headers—what do they reveal?
Standard security recommendations include hiding information about the server environment on which the site
resides. Information leakage vulnerabilities don’t receive the attention that more critical vulnerabilities do, and they
are often ignored during site audits. However, a review of server headers reveals that a wealth of information of
potential importance to attackers is being exposed.

24

Figure 25: Percentage of sites that expose server software information

It is not a trivial task to compromise a site successfully using only the server name information. However, knowing the
specific version of the particular server allows attackers to look for version-specific vulnerabilities, which makes
compromise more likely. Figure 26 shows that 64 percent of the sites that show their server information also expose
their software version information.

Figure 26: Percentage of sites with both software and version information exposed

Site administrators often fail to patch their systems in a timely matter for a variety of reasons. As shown in Figure 27,
47 percent of the sites tested that had server software and version information exposed are potentially vulnerable to a
publicly disclosed vulnerability in the commercial piece of their software. These vulnerabilities may be critical, or they
may involve information disclosure.

25

Figure 27: Percentage of server software with at least one unpatched vulnerability (*source: secunia.com)

Web 2.0 applications
Web 2.0 applications are feature-rich applications that incorporate multiple, disparate Web programming
technologies to maximize the user experience. A common technology often associated with Web 2.0 is AJAX, or
Asynchronous JavaScript and XML. From social networking sites to mapping applications, it’s no secret that the
percentage of Web applications incorporating these features—either partially or completely—is on the rise.

For this study, the HP Web Security Research Group examined the sample of 111 distinct scans in order to discover
how many sites incorporate Web 2.0 features. The group also examined the critical- and high-severity findings within
these scans and compared the vulnerability counts discovered in Web 2.0 applications versus traditional Web
applications, as shown in Figure 28.

Of the total sample size, 78.38 percent were traditional Web applications; Web 2.0 applications comprised just
22.52 percent. Of the vulnerabilities present per scan, the traditional Web applications contained approximately
twice as many critical and high vulnerabilities (22.96 and 12.81 percent, respectively).

Figure 28: Average vulnerabilities per scan for traditional vs. Web 2.0 applications

As shown in Figure 29 below, the severity distribution of vulnerabilities in the sample was compared across both
traditional and Web 2.0 applications. While the distribution is closely related, the actual vulnerabilities that comprise
the aggregate totals vary.

26

Figure 29: Severity distribution

The table below lists the top six vulnerabilities by severity discovered across technologies. While SQL injection was
observed in the traditional applications, it was not represented in the Web 2.0 sample size.

The top critical vulnerability across both traditional Web applications and Web 2.0 applications remains cross-site
scripting, which comprised 95 percent of the vulnerabilities in Web 2.0 technologies, and 73 percent in traditional
Web applications. AJAX sessions are just as susceptible to cross-site scripting vulnerabilities as are traditional HTTP
sessions.

Table 1: The top six vulnerabilities by security

Traditional Web application Web 2.0 application

Severity Vulnerability Severity Vulnerability

Critical Cross-site scripting Critical Cross-site scripting

Critical Database server error message Critical Database server error message

Critical SQL injection Critical Command execution

High Backup file disclosure High Unencrypted authentication

High ASP.net filter bypass XSS High Backup file disclosure

High Unencrypted authentication High Admin section requires authentication

It almost seems nonsensical that Web 2.0 applications would contain fewer vulnerabilities than standard
applications. One possible explanation is that the composition of Web 2.0 applications broadens or obscures the
attack surface, making it a little less straightforward to ensure that the application uses best practices to thwart attacks
such as SQL injection and cross-site scripting.

Information leakage
For this section, developer comments were examined and analyzed for vulnerabilities. Frankly, the level and
pervasiveness of the vulnerabilities were surprising. One finding that stood out was the questionable practice of
encapsulating verbose stack trace messages inside HTML comments, especially stack traces that may result in a
confirmed SQL injection vulnerability. This technique was represented in 13 percent of the sample set. Table 2 details
the types of discovered vulnerabilities and their severity.

Table 2: Types of discovered vulnerabilities

Severity Vulnerability

Critical Database server error message

High Unencrypted login form

27

Severity Vulnerability

Medium Java runtime error message
.NET verbose errors enabled
ASP.NET stack trace disclosure

Low Possible file upload capability
Internal IP disclosure
Unexecuted server side include
Subversion keyword information disclosure
Possible server path disclosure (win32)
reCAPTCHA implementation detected

Informational Flash object detected
Unsafe Flash embed settings—allow script access

Best Practices Form auto complete active
Possible insecure cryptographic hash (MD family)
Possible insecure cryptographic hash (SHA-0/SHA-1)

Figure 30 represents the types of vulnerabilities found in developer comments, grouped by severity ranking.

Figure 30: Information leakage vulnerabilities by severity

Code- and database-level error messages were discovered throughout the sampling of scans. Surprisingly, multiple
applications used this security-through-obscurity approach to keep verbose error messages from being presented to
the user instead of suppressing them at the application/server level.

Many if not all of the verbose error messages were generated by the scanner when testing the respective target
application. Approximately 13 percent of the scans included this method to prevent error messages from being
displayed to the end user.

Attackers use verbose error messages to both find and exploit applications. If verbose error messages are correctly
handled by the application, the attacker will then turn to behavioral characteristics of the application that may
indicate an error condition (e.g., timing-based attacks or correctly handled error messages). Developers should avoid
the practice of including verbose stack messages within the HTTP responses, and especially HTML comments, as it
aids attackers by providing further insight into the application’s implementation.

As for the entire sample, Figure 31 represents the percentage of scans containing each vulnerability severity,
including those scans that revealed no vulnerabilities through HTML comments. Nearly 60 percent of the scans
revealed no risks through HTML comments; 16 percent contained vulnerabilities of medium severity or higher.

28

Figure: 31: Severity distribution percentages

Typically, HTML comment vulnerability distributions fall into the information leakage threat classification. It’s clear
from this study that, of these information leakage classifications, much more severe attacks can result such as SQL
injection, server-level compromises, or even credential theft.

Application and developer version information
A commonly encountered practice throughout the sample scan set included the discovery of plentiful comments and
version information left by the developer. Version and modification-related notations ranged in severity from
innocuous software version detection logic to comments referring to limitations of older versions and workarounds
supplied to enable the application to function correctly.

Specific developer information, including name, employer, date of change, and other revision-related information,
was also observed within the sample. This type of information can lead to further targeted attacks against the
application—or provide more criteria for a determined attacker to search against for known vulnerabilities. Using
specific version information from the implementation, an attacker may be able to find public vulnerability disclosure
notices for the pertinent application.

Credentials and other authentication information
Authentication-related information, ranging from anonymous ftp servers to usernames and passwords for applications,
was discovered throughout our sample. In certain instances, HTML comments disclosed the underlying authentication
scheme’s implementation, for example, by describing specific instances when LDAP vs. database authentication is
used. These details may help a malicious user tailor attack payloads to increase the probability of success.

In other instances, searches against “private/public key,” “username,” and “password” keywords also produced a
successful hit. In this specific instance, the authentication credentials were present within commented JavaScript.

Server-side attacks
The past year showed continuation of the tendency for existing vulnerabilities to be targeted much more than new
ones. The most popular server-side attacks over the last year were existing ones: SQL Slammer and attacks against
the MS08-067 vulnerability to spread Conficker.

As shown in Figure 32, the HP DVLabs honeypot network also identified an extremely large number of Conficker
exploit attempts over the second half of last year. Attacks from Russia comprised the majority of the attempts, but
Taiwan, Brazil, U.S., Hungary, and Romania also had very strong showings. The honeypots collected over 1,700
unique Conficker binaries that allowed for verification of existing HP TippingPoint filters. The filters that exist for
protection of the MS08-067 vulnerability that Conficker exploits continue to provide protection regardless of how
many variants exist, because they protect against the vulnerability and not a specific binary. The honeypots in Brazil
saw by far the most Conficker attacks, but the U.S.-based honeypots were not far behind. The attacks targeting Brazil
may be due to a lack of patching that may come from software piracy. Non-legitimate versions of Windows® do not
allow users to retrieve important security updates, which leaves them vulnerable to many older security holes.

29

Figure 32: Port attacks by destination

Honeypot trends
Over the past year, HP DVLabs has deployed a honeypot network using cloud infrastructure in geographically diverse
locations. Figure 33 shows the number of distinct IP addresses or sources for the top 10 countries. The attacks
targeting the honeypots show that, while there are some countries from which attacks appear to originate more than
others, all countries are involved in attacks. Russia leads the way as the origin for the largest number of attacks, but it
does not dwarf the other countries to a large enough degree to claim that it is significantly worse than the other
observed origin countries. The data collected from the honeypot network shows older vulnerabilities are still extremely
popular—an assertion backed up by attack data collected from the HP TippingPoint IPS network.

Figure 33: Distinct sources from honeypots

The majority of the attacks observed on the honeypots were attacks by automated tools or bots. These attacks ranged
from previously mentioned attempts to exploit MS08-067 to authentication bypass attempts and brute-force login
attempts. A large number of open proxy scan attempts in the Asia Pacific region were also seen. These scans may be
precursors to launching a larger number of attacks upon the successful location of a usable proxy.

Attacks originating in Russia targeted SMB almost exclusively. Attacks originating in China were seen to target
MS-SQL Server the most, followed by Microsoft Remote Desktop and Microsoft SMB. The MS-SQL attacks seen were

30

attempting brute-force login attempts, and the remote desktop attacks were attempting the same. One of the most
interesting statistics that the honeypot network observed was the targeting of Telnet by Sweden, specifically in the
European region. Sweden was seen targeting Telnet more than any other country, and the majority of the attempts
were isolated to Europe.

Client-side attacks
Web browser attacks comprised the majority of the client-side attacks seen by HP DVLabs in 2011. Internet Explorer
saw the most attacks, Firefox was second, and Google Chrome and Safari were a distant 3rd and 4th. The most
popular attacks seen targeting Internet Explorer were all from late 2010 or 2011. The most popular attack targeting
Firefox was also attempting to exploit a vulnerability disclosed in 2011. A large number of attacks using obfuscated
JavaScript to attempt to load exploits were also observed. A large number of malicious PDF attacks were also
detected that targeted Adobe Reader using older vulnerabilities.

31

Attack techniques

Exploit kits over the past year
The past few years have seen an explosion in the popularity of exploit kits. Exploit kits were first covered in the 2010
full year HP DVLabs cyber security risks report, and the growth in their popularity—and in the number of new exploit
kits—warrants further coverage.

The past year has seen many updates of existing kits as well as the addition of many new kits. Late in the year,
Chinese exploit kits started turning up for the first time. Older exploit kits such as Bleeding Life and Phoenix are still
going strong; Blackhole’s popularity seems to be growing exponentially; and many new kits—such as Sakura Pack,
Yang Pack, and Siberia—have emerged with exploits for many recent vulnerabilities in an effort to challenge
established kits such as Phoenix, Eleonore, and Blackhole.

Updates to Eleonore and Yang Pack over the last year saw each add three CVEs from 2011. Blackhole added just
one 2011 CVE very late in the year, but still grew to be the most popular exploit kit observed—and that merits a look
at the last year’s Blackhole–related activities.

Blackhole exploit kit
The popularity of the Blackhole exploit kit increased significantly in 2011, and the kit now appears to be the exploit
kit of choice for the majority of cyber criminals. Instances of compromised sites serving and/or redirecting to
Blackhole sites over the last year grew dramatically. This trend was also evidenced by the increase in samples
collected as the year progressed. Many high-profile sites such as the USPS and MySQL.com websites were hacked
and made to serve up Blackhole pages in an attempt to infect their visitors with various malware. Blackhole was also
used in a massive compromise of Wordpress sites through a vulnerable plug-in. A patch was available for this plug-in
months prior to the launch of the campaign that compromised the vulnerable sites.

The surprising fact about Blackhole’s success is that despite using known, patched bugs from 2010 and prior, it still
achieved infection rates comparable to or better than other exploit kits tracked by HP DVLabs earlier in 2011. In late
November, an exploit for CVE-2011-3544 was added that achieved a very high infection rate—above 80 percent
near the end of the year, and above 70 percent in early 2012.

Blackhole’s prevalence started to increase as free versions were released using a “try before you buy/fermium”
model.

Figure 34: Timeline for Blackhole exploit

32

Blackhole has also become a popular method for spreading the ZeuS, Cutwail, Spyeye, and Carberp botnets via
compromised ad networks, spam campaigns, and other compromised sites. As Figure 35 shows, the number of
compromised sites serving Blackhole for the purpose of spreading Carberp variants increased in November 2011,
and the increase lasted through December.

Figure 35: Elements of that make up the Blackhole exploit toolkit

Vulnerabilities Exploit delivery Anti-detection Compromised hosts

CVE-2012-0507
CVE-2011-3544
CVE-2010-3552
CVE-2010-1885
CVE-2010-1423
CVE-2010-0886
CVE-2010-0842
CVE-2010-0840
CVE-2009-1671
CVE-2009-0927
CVE-2008-2992
CVE-2007-5659

Exploited sites
• Compromise through SQL

injection, XSS, etc.
Spam campaigns
• Send malicious email with

links to sites

Obfuscations
• JavaScript
• Exploit
• PDF

Add to botnet
• Zeus
• SpyEye
• Carberp
Use botnet to launch attacks
Rent out botnet
PROFIT

Blackhole obfuscation
One of Blackhole’s strengths is that it employs constantly changing obfuscation techniques. A number of different
obfuscation methods from Blackhole were seen among the samples collected from compromised sites for analysis in
2011.

These methods ranged from simple string concatenation techniques, such as “from” and ”charCode,” to more
complex techniques requiring complex string manipulation, value adjustment through math functions, and then
additional decoding. Figure 36 shows a de-obfuscated version of Blackhole side by side with the obfuscated version,
demonstrating the difference between what is rendered by a browser and what is seen on the wire.

Blackhole uses obfuscations in its PDF and Java exploits as well, but its JavaScript obfuscations are the most
challenging to deal with due to the rapid changes they exhibited in 2011.

Figure 36: Blackhole exploit kit normal vs obfuscated

Obfuscation
Obfuscation is commonly referred to as hiding the original meaning of a message by modifying its appearance. In
terms of programming, the intent of obfuscation is either to make the compiled code so difficult to understand that
intellectual property theft will be hard, or to make it difficult to understand in order to evade security devices such as
AV or IPS. Popular penetration testing frameworks like Metasploit have their own custom obfuscation libraries to help
their exploits avoid detection when used in penetration tests.

33

Obfuscation has become increasingly popular among exploit toolkits, malware authors, and commercial software
vendors. The number of malware samples collected over the past year that contain some form of obfuscation
demonstrate how popular it has become.

JavaScript
JavaScript is a programming language that allows programmers to write code that appears to be gibberish until
evaluated. Code such as the following:

$=~[];$={___:++$,$$$$:(![]+"")[$],__$:++$,$_$_:(![]+"")[$],_$_:++$,$_$$:({}+"")[$
],$$_$:($[$]+"")[$],_$$:++$,$$$_:(!""+"")[$],$__:++$,$_$:++$,$$__:({}+"")[$],$$_:
++$,$$$:++$,$___:++$,$__$:++$};$.$_=($.$_=$+"")[$.$_$]+($._$=$.$_[$.__$])+($.$$=(
$.$+"")[$.__$])+((!$)+"")[$._$$]+($.__=$.$_[$.$$_])+($.$=(!""+"")[$.__$])+($._=(!
""+"")[$._$_])+$.$_[$.$_$]+$.__+$._$+$.$;$.$$=$.$+(!""+"")[$._$$]+$.__+$._+$.$+$.
$$;$.$=($.___)[$.$_][$.$_];$.$($.$($.$$+"\""+$.$_$_+(![]+"")[$._$_]+$.$$$_+"\\"+$
.__$+$.$$_+$._$_+$.__+"(\\\"\\"+$.__$+$.__$+$.___+$.$$$_+(![]+"")[$._$_]+(![]+"")
[$._$_]+$._$+"!\\\")"+"\"")())();

evaluates to:

alert(“Hello!”)

It is thus difficult to determine how malicious the code is without an evaluation.

Another trick is to take functions such as eval and then use a combination of string concatenation and reassignment to
evade any detection mechanisms that specifically look for the eval statement:

e = eval;

e(“alert(‘hello!’)”);

Still another option is to use character decoding from numeric values and string concatenation to create a string that
will then be evaluated as valid code:

a=String.fromCharCode("97")+String.fromCharCode("108")+String.fromCharCode("101")
+String.fromCharCode("114")+”t”+”(1);”;

eval(a)

There are endless language “features” in JavaScript that can be combined to create code that, at first glance,
appears to do nothing; but when evaluated, shows both valid and malicious code. A few examples were shown
above, but many others exist, and more are discovered regularly. Figure 37 shows the number of samples collected
by HP DVLabs in 2011 that contained some form of obfuscation. Except for a spike in February and a dip in
September, more obfuscated samples were collected in each month during the second half of 2011 than in any
month in the first half of the year. The rise in exploit kit popularity and obfuscation in exploit kits may help account for
this increase.

Figure 37: Malware samples observed using obfuscation 2011

34

PDF
Obfuscations are also becoming increasingly common in PDF documents. Using things like compressed streams and
AsciiHexDecode in combination with selective character replacement makes detection of malicious PDFs more
difficult, but not impossible. Some of the more sophisticated obfuscation techniques are similar to this:

<</Length 33225 /Filter [/ASCIIHexDecode /LZWDecode /ASCII85Decode
/RunLengthDecode]

>>

stream

801C8E6421988C604C1B9C8B0353994856691A958A04A340C88836868C8C033349646E3634984CA35
2B8E89A62191147A232E0DCA42F3588E22621196462631B938AC33139748 …

This obfuscation uses multiple layers of data encoding in combination with compression to hide the true intent.

Simple obfuscations like this:

/Flate#44ecode

also remain very popular in PDF documents as they evade any signatures that look for a static string, but are very
easy to detect as very few legitimate documents do this.

PDFs gain additional benefit from every JavaScript obfuscation because JavaScript is supported in the PDF
specification, so the combination of obfuscations described in the JavaScript section—along with a few other PDF
techniques—can be combined to create some very interesting and malicious PDF documents.

35

Botnets

Introduction
In 2011, research performed by HP DVLabs showed an interesting uptick in activity related to the presence of diverse
botnet families and malicious code. Botnets and malicious code and content remain a high-growth area for
HP DVLabs. These events were reported from within the HP TippingPoint IPS appliance footprint—from those that have
opted to share attack-related statistical data with HP DVLabs for research and trend analysis. That data—along with
information harvested from HP’s global threat intelligence ecosystem ThreatLinQ, its IP reputation database, and its
Lighthouse program, as well as other open source data—indicates that botnet activity and growth are subject to
variability and interruption but are in no way diminishing. HP DVLabs believes it is important to note that because the
data reported by participating customer environments—specifically data concerning botnet-related attacks—is a
representative sampling of data flowing through the total footprint of the HP TippingPoint IPS, it can infer only
plausible conditions and trends while being positioned to extrapolate on a gross basis.

Botnet event statistics
The data presented in Figure 38 represents 12 families of botnets monitored over the course of 2011.

Figure 38: Botnets and command and control (C&C)–enabled Trojans tracked by HP DVLabs

Botnets and C&C–enabled Trojans
tracked by HP DVLabs

Basic characteristics

ZeuS (aliases Zbot, Kneber ZeuS) Known colloquially as the king of the banking fraud Trojans6. ZeuS7 began as a
Trojan horse program8 designed to conduct man-in-the-middle browser keystroke
logging and form credential collection. In 2009, it spread wildly, with estimates
of total bot members in excess of 3.6 million in the U.S. alone.9 The ZeuS
package contains a builder that can generate a bot executable along with web
server files (PHP, images, SQL templates) for use as the command and control
server. While Zbot10 remains largely a generic backdoor that allows full control
by an unauthorized remote user, the primary function of Zbot is financial gain—
stealing online credentials such as FTP, email, online banking, and other online
passwords.11 Recent versions of the ZeuS botnet use classical copy protection
mechanisms to prevent the use of unlicensed pirate copies. Some versions are
key-centric and will only execute when authorized, fully credentialed system-
specific key is used. A hardware configuration inventory (asset analysis) is
created and leveraged by the vendor as part of the unique authenticators
needed to execute the personalized key on the specified hardware platform12.
The latest versions of ZeuS are even more sophisticated—their heightened,
decentralized approach to management is characterized by peer-to-peer (P2P)
communication, making detection, identification, and shutdown more difficult.13

Asprox (aliases Badsrc and Aseljo)

The Asprox Trojan horse program14 was discovered in 2008 and quickly rose to
prominence because it could be added via SQL injection to websites in order to
promulgate malicious payloads in phishing scams and exploits. The Asprox
Trojan was initially released as a spamming component of a password-stealing
Trojan known as Danmec15. The Trojan contained many features and
capabilities such as advanced SQL injection, its ability to embed malware on
legitimate (non-malicious) websites using iframe tags for malicious redirection,
and its fast-flux detection-avoidance capabilities16

6 www.infosecurity-magazine.com/view/12907/zeus-is-king-of-bank-fraud-trojan-viruses/

. In its early days, Asprox was

7 www.fbi.gov/news/stories/2010/october/cyber-banking-fraud
8 www.threatexpert.com/threats/trojan-spy-win32-zbot-gen.html
9www.hindu.com/thehindu/holnus/008200907271321.htm
10 www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
11 http://pastehtml.com/view/1ego60e.html
12 www.secureworks.com/research/threats/zeus/?threat=zeus
13 www.abuse.ch/?p=3499
14 www.symantec.com/security_response/writeup.jsp?docid=2007-060812-4603-99
15 www.symantec.com/security_response/writeup.jsp?docid=2005-112214-3654-99
16 www.zdnet.com/blog/security/fast-fluxing-sql-injection-attacks-executed-from-the-asprox-botnet/1122

36

Botnets and C&C–enabled Trojans
tracked by HP DVLabs

Basic characteristics
largely promulgated via the Pushdo/Cutwail spambot.17,18 Approximations
regarding standing bot memberships are contradictory; however, it is estimated
that more than 10,000 hosts are currently active in the Asprox ecosystem19

SpyEye

.

The SpyEye Trojan20 first came into prominence in mid-2011. A derivative of the
ZeuS (Zbot) Trojan horse/botnet, SpyEye captures keystrokes and steals login
credentials through a method known as “form grabbing.” SpyEye will send
captured data to a remote attacker, download updates, and use its rootkit
component to hide malicious activity from local and network administrators21.
The SpyEye Trojan22 collects a great deal of information about the infected host
it has compromised; it then sends that data to a command and control server for
use by the botmaster23

• Bot GUID (a unique identifier associated with the malware)

. The information that Spyeye attempts to gather and send
to a remote server includes the following:

• Current user name
• Computer name
• Volume serial number
• Process name associated with captured data
• Name of hooked API function (for example PR_Write)
• Keystrokes
• Information specific to computer locale, such as local time and time zone
• Operating system version
• Language
Some samples of SpyEye have been known to demonstrate advanced efficacy in
injecting code into running processes and performing the following functions:
• Traffic capture
• Firewall bypassing
• Obfuscation to prevent registry detection
• Obfuscation to prevent access to the binary code
• Obfuscation to prevent its process(es) within other running processes
• Internet Explorer and Mozilla Firefox session captures

Sasfis Discovered in 2010, the Sasfis Trojan24 program opens a backdoor on the
compromised computer. The Trojan may arrive as a spammed email. Once
executed, it injects itself into processes running on the computer so that it can
operate stealthily. It may then download more files on to the compromised
computer25. Sasfis is typically delivered to the susceptible host via spam or
drive-by infection. Once the Trojan has been installed on the compromised
computer, it connects with a command and control (C&C) server to register itself
as a bot. The Trojan then awaits instructions from the C&C server. These
instructions often download configuration files or malware for promulgation
purposes26

Shellbot (aliases Backdoor.Perl.Nois.a

.

Backdoor.Perl.Shellbot.a
Perl/Shellbot)

This Trojan27 was written in Perl. It is designed to attempt to establish a
connection to an Internet relay chat (IRC) server joining as a predetermined,
password-enabled channel established by the botmaster28

Gbot (aliases Trojan-Backdoor-Gbot)

. Once the bot has
successfully logged into the channel, it is fully enabled to receive command
strings from the botmaster.

The Gbot Trojan is a remote access tool (RAT) that may allow an attacker to
gain unauthorized access to a system or enterprise. Generally, the Gbot Trojan

17 www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Pushdo-Gen.aspx
18 www.techrepublic.com/blog/security/pushdocutwail-botnet-second-to-none-when-it-comes-to-spamming/1637
19 www.theregister.co.uk/2008/05/14/asprox_attacks_websites/
20 www.threatexpert.com/threats/trojan-spyeye.html
21 www.microsoft.com/security/portal/threat/Encyclopedia/Entry.aspx?Name=Trojan%3AWin32%2FSpyeye
22 www.threatexpert.com/report.aspx?md5=9d2a48be1a553984a4fda1a88ed4f8ee
23 www.eset.eu/encyclopaedia/win32-spy-spyeye-b-trojan-pincav-shd-backdoor
24 www.threatexpert.com/report.aspx?md5=a389bdcaacd565169904707e4adc2536
25 www.symantec.com/security_response/writeup.jsp?docid=2010-020210-5440-99
26 www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/pay_per_install.pdf
27 www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Shellbot-A.aspx
28 www.mcafee.com/threat-intelligence/malware/default.aspx?id=130620

37

Botnets and C&C–enabled Trojans
tracked by HP DVLabs

Basic characteristics
is distributed as an embedded file infection via email. Also known as Trojan-
Backdoor-Gbot29

• Manage files on your computer, including creating, deleting, renaming,
viewing, or transferring files to or from your computer

, this Trojan may engage in any of the following activities:

• Engage a program manager that allows a hacker to install, execute, open,
or close programs

• Establish remote control of your cursor and keyboard
• Execute and run in the background, effectively hiding its presence from anti-

malware

Phatbot Derived from the Agobot Trojan, Phatbot30 is a backdoor that affects Microsoft
Windows operating systems. Phatbot uses a client/server relationship, where
the server component is installed in the victim's system and the remote attacker
has control of the client.31

Powerbot

Powerbot is a botnet designed for use in the PC online game RuneScape.

Gumblar (aliases Troj/JSRedir-R) Gumblar first emerged in 200932

• Enable promiscuous mode on the hosts NIC for network traffic sniffing

. It was primarily known for hijacking users’
Google searches and installing unauthorized applications and programs. It was
largely promulgated via PDF exploit through SMTP communications. Once
infected the installed on the host, it could conduct a variety of activities:

• Enumerate host for credentials to download sites such as FileZilla,
Dreamweaver, DropBox

Gumblar uses passwords obtained from site admins.33 The host site will access
a website via FTP and infect the website. It will download large portions of the
website and inject malicious code into the site's files before uploading the files
back onto the server. The code is inserted into any file that contains a <body>
tag, such as HTML, PHP, JavaScript, ASP, and ASPx files. The inserted PHP code
contains base64-encoded JavaScript that will infect any computer executing the
code. In addition, some pages may have inline code inserted into them.
Typically, iframe code contains hidden links to certain malicious websites34

Gumblar will also modify .htaccess
.

35

Conficker A/B/C

 and HOSTS files, and create images.php
files in directories named “images.” The infection is not a server-wide exploit; it
will only infect sites on the server to which it has passwords.

Mal/Conficker-A(Sophos)
Win32/Conficker. A (CA)
W32.Downadup (Symantec)
W32/Downadup.A (F-Secure)
Conficker. A (Pandac
Net-Worm.Win32.Kido.bt (Kaspersky)
W32/Conficker. Worm (McAfee)
Win32.Worm.Downadup.Gen (BitDefender)
Win32:Confi (avast!)
WORM_DOWNAD (TrendMicro)
Worm.Downadup (ClamAV)

Conficker36 infected an estimated seven million government, business, and home
computers in over 200 countries, making it the largest known computer worm
infection since the 2003 Welchia. Conficker was first detected in 2007.
Conficker uses flaws in Windows software and dictionary attacks on
administrator passwords to propagate while forming a botnet, and has been
unusually difficult to counter because of its combined use of many advanced
malware techniques37,38

29 http://research.webroot.com/search.php?serialnumber=DW4ORB8V
30www.iss.net/security_center/reference/vuln/Phatbot_P2P.htm
31www.google.com/url?sa=t&rct=j&q=phatbot%20trojan&source=web&cd=3&ved=0CDoQFjAC&url=https%3A%2F%2Fsupportforums.cisco.com%2Ft

hread%2F61662&ei=USx2T7-LO6iYiAKn-tGnDg&usg=AFQjCNG8YvSKWiEMXGm2SV3b0qouMX3bdw
32 http://en.wikipedia.org/wiki/Gumblar
33 www.symantec.com/connect/blogs/gumblar-botnet-ramps-activity
34 http://securitylabs.websense.com/content/Blogs/3401.aspx
35 http://en.wikipedia.org/wiki/.htaccess
36 http://mtc.sri.com/Conficker/
37 http://en.wikipedia.org/wiki/Conficker
38 www.confickerworkinggroup.org/wiki/

38

The following were among the most active botnets seen by HP DVLabs during the course of 2011:

Botnets and C&C–enabled Trojans by family
ZeuS
An interesting pattern emerged with respect to phone-home requests from the ZeuS botnet. 2011 saw a volatile
pattern in ZeuS phone-home requests, as illustrated in Figures 39 and 40.

Figure 39: 2011 Attack trend for backdoor ZeuS botnet C&C phone-home request

Figure 40: 2011 Hits for ZeuS botnet 2.0 phone-home request

Asprox
The Asprox botnet demonstrated a sharp decline towards the end of 2011. Interestingly enough, this was followed by
a relatively sharp spike in activity beginning in August and peaking in October, as seen in Figure 41.

39

Figure 41: 2011 Number of unique attacks for HTTP: SQL Injection tool with Asprox botnet

SpyEye
As shown in Figure 42, 2011 data also showed a decrease in activity associated with the SpyEye botnet. The data
suggests that phone-home requests from hosts compromised by SpyEye began declining in March 2011, achieved a
slight plateau in June 2011, and then declined throughout the remainder of 2011.

Figure 42: 2011attacks for backdoor: SpyEye botnet C&C phone-home request

Sasfis
Though a lesser-known botnet, Sasfis was active on many networks from which HP DVLabs collected data. Sasfis is
often used in the propagation of malicious code and content designed or manipulated by authors who lack their own
mechanisms for distribution. As shown in Figure 43, HP DVLabs noted that activity related to the Sasfis botnet peaked
early in 2011 and tapered off towards the end of the year; little to no activity was reported beyond September 2011.

40

Figure 43: 2011 Attacks for Sasfis botnet C&C request

Shellbot
Activity associated with the Shellbot Trojan, a malicious Perl script, was also collected during 2011. As shown in
Figure 44, activity associated with this botnet peaked in February 2011 and then declined swiftly thereafter.

Figure 44: 2011 attacks for HTTP Shellbot malicious Perl script

Gbot
Activity associated with the Gbot botnet/C&C–enabled Trojan was also collected in 2011. This activity, as evidenced
by Figure 45, demonstrated an erratic, relatively short-lived pattern. Communications associated with this Trojan were
initially very steady for the first three months of the year; however, by April, they appeared to go completely flat. The
inactivity remained until June, when activity resumed and spiked once more. Another sharp decline was noted in
August, followed by a period of inactivity until September when communications spiked again. That spike lasted
through November; little to no activity occurred throughout the remainder of 2011.

41

Figure 45: 2011 Attacks for HTTP Gbot Trojan communication

Phatbot
As shown in Figure 46, data collected by HP DVLabs showed that the Phatbot botnet exhibited activity in the first five
months of 2011, but none in the latter half of the year.

Figure 46: 2011 Phatbot activity

Powerbot
Activity associated with the PowerBot botnet during 2011, as shown in Figure 47, peaked and fell in less than four
months.

42

Figure 47: 2011 PowerBot activity

Gumblar
Though this botnet was quite well known and prolific in many areas of the world, HP DVLabs data on the Gumblar
botnet demonstrates a limited view into its activity. As seen in Figure 48, March and September 2011 showed
uncharacteristically high activity.

Figure 48: 2011 Gumblar activity

43

Mitigation thoughts
Infrastructure has been an information security industry hot topic over the last several years. Virtualization, cloud,
mobile, and SCADA, the various infrastructure types have captured much attention regarding how they affect the way
we view security—and how we perhaps should view security. In the Vulnerabilities section, legacy infrastructure is
defined as that of the physical world—the typical server/client model. SCADA is a really interesting problem because
ideally security technology should not be bolted on but rather embedded as much as possible into the application
delivery; however, with SCADA, bolted-on security is for the time being likely to remain the only good way to tackle a
very large problem.

Lastly, there are newer types of infrastructure: virtualization, cloud, and mobile. Many have pointed to the hypervisor
and management aspects of virtualization and said “Watch out!” Many more have pointed to the multi-tenant aspects
of cloud computing and the control and potential privacy that one gives up and said “Watch out!” With the constant
proliferation of smart mobile devices, the risks are obvious; the rollout of the new model of computing and the
interaction of mobile devices with applications being hosted in heavily virtualized environments are the basis for a
cloud model. At the end of the day, regardless of the device being used to access this data and regardless of the
model in which these applications are hosted, application access and delivery are the key to managing security risk.
Therefore, the discussion of new and aging infrastructure is a healthy one. SCADA aside, the focus should not stray
from the applications. This is exactly why there is such a focus on both the Web browser and Web applications,
because regardless of what changes in the background, these technologies will still be used in every infrastructure
type mentioned.

Alongside the discussion of infrastructure, two other topics are gaining momentum in the information security industry.
One is the feeling that attackers are winning, and the second is that we should do everything in our power to make it
harder for them to win—and not to allow such attackers to stand on the shoulders of the security industry.

At one recent talk, Adobe’s Brad Arkin recently proposed that security researchers focus more on the defensive
aspects of security rather than the offensive; raising the cost of attacks, he reasoned, should be the priority. It also
seems that the buzz term of 2012 is “big data”—which can represent many different ideas depending on what the
data is. In the security industry specifically, it seems that enterprises want to enable better security decisions based on
their security data. The apparent need for more actionable information implies a need for actionable defenses to take
advantage of this data. It is no longer enough to write more exploits to enable visibility into how insecure and
potentially compromised the environment is.

Historically, internal compliance, external compliance, visibility into patching, and overall security practice and
process have been driven in large part by penetration testing and other similar assessment models and technology.
However, there are growing themes of “We know it’s bad; do we really need to know how bad it is anymore?” and
“Why aren’t we preventing what we already know exists?” If security is predominantly about risk management, then
why the focus on highlighting the risk that industry professionals seem to be aware of? Why not spend money and
time actually reducing risk rather than producing more reports proving compliance or constantly justifying budget?
Prevention can take many forms, and there is even risk in putting technology in place that can take action to reduce
the attack surface available to attackers. Nevertheless, it seems that the pendulum has swung so far in the attackers’
favor that the excuse of not wanting to interrupt business due to security concerns is no longer valid—just ask any of
the high-profile cases of 2011.

HP DVLabs is heavily invested in vulnerability discovery and disclosure as well as overall threat landscape research
and forecasting. This research has enabled a number of products in the HP security portfolio—historically intrusion
prevention technology. However, some in the industry were recently confused when referencing both the ZDI and
Pwn2Own during conversations about offensive security, simply because of the focus on vulnerabilities. The fact is
both the ZDI and Pwn2Own are leveraged for defensive purposes via IPS protection. Assessing the impact that both
have had on the rest of the industry, very little has been related to offensive security, but a great deal has had a very
positive influence on the defensive aspects of security.

At the end of the day, it isn’t possible to report one’s way out of an attack. If all these reports and “big data” aren’t
both driving better security decisions and enforcing risk reduction via compensating controls, then the organization’s
security posture isn’t maturing in line with the always-growing attacker threat that we are all working to mitigate.

44

Glossary
CVSS score
A standard method for rating security vulnerabilities in software systems. CVSS (for Common Vulnerability Scoring
System) provides a standard set of criteria for measuring how easy a given vulnerability is to exploit and the damage
that vulnerability could inflict. This score allows vendors and users to prioritize mitigation. The scoring system ranks
vulnerabilities from 1 to 10, 10 being the most severe.

Command execution
A type of vulnerability that takes advantage of a lack of input validation on a website in order to run operating
system commands on the vulnerable application server. Typically this vulnerability category allows attackers to exploit
Web applications that pass user data as parameters to I/O operations by appending OS commands to user-supplied
input using special characters such as a pipe (|).

SQL injection
A type of Web application vulnerability that takes advantage of a lack of input validation on a website in order to
execute unauthorized database commands on a Web applications database server. When successfully exploited,
data can be extracted, modified, inserted, or deleted from the database servers used by the vulnerable Web
application. In certain circumstances, SQL injection can be used to take complete control of a system.

In an SQL injection attack, an attacker can exploit vulnerable code and the type of data an application will accept,
and any application parameter that influences a database query can also be exploited. Examples include parameters
within the URL itself, post data, or cookie values. If successful, SQL injection can give an attacker access to backend
database contents, the ability to remotely execute system commands, or, in some circumstances, the means to take
control of the server hosting the database.

Blind SQL injection
Normal SQL injection attacks depend in large measure on an attacker reverse engineering portions of the original
SQL query using information gained from error messages. However, your application can be susceptible to blind SQL
injection, even if no error message is displayed. The consequences of a successful attack are the same as those for
regular SQL injection.

Cross-site scripting (XSS)
A type of Web application vulnerability that takes advantage of a lack of input validation to enable an attacker to
inject malicious client-side code into a Web page that is viewed via a victim’s Web browser. Various forms of XSS
are currently being used to phish website users into revealing sensitive information such as usernames, passwords,
and credit card details. XSS can generally be divided into stored, reflected, and document object model (DOM)-
based attacks. Stored XSS results in the payload persisting on the target system, either in the database or the file
system. The victim will retrieve and execute the attack code in the browser when a request is made for the stored
information. Execution of the reflected XSS attack, on the other hand, occurs when user input from a Web client is
immediately included via server-side scripts in a dynamically generated Web page. A DOM-based XSS attack relies
on malicious modification of the DOM environment in a victim’s browser. It differs from the stored and reflected XSS
in that the malicious data is never sent to the server. Via some social engineering, an attacker can trick a victim—
through means such as a malicious link or “rigged” form—into submitting information that will be altered to include
attack code and then sent to the legitimate server.

Denial of service (DoS)
A type of vulnerability that allows an attacker to exhaust computer resources on a vulnerable system to a point where
legitimate use of the system in question is impossible.

Distributed denial of service (DDos)
A type of DoS attack that employs a number of separate computers, which simultaneously launch denial of service
attacks against a single application or system.

Remote file include
A type of Web application vulnerability that takes advantage of a lack of input validation on a website in order to
execute unauthorized code (typically PHP or ASP) on a vulnerable server. Remote file-include attacks typically arise
from a scripting language’s inherent ability to include code from external URLs or arbitrary local files.This ability
allows the attacker to include unauthorized code from an external source.

Cross-site request forgery (CSRF)
A type of Web application vulnerability that takes advantage of a lack of authorization on a vulnerable Web
application to allow an attacker to execute application commands on behalf of another user of the application. The
typical scenario of a CSRF attack involves an attacker tricking a victim into clicking on a link that is specially crafted
to perform a malicious operation on behalf of the victim. For example, a victim may click on a malicious link that
forces a transfer of money from the victim’s bank account to the attacker’s bank account.

Database server error
Database server error messages are returned when an unhandled exception is generated in Web application code.
Unhandled exceptions are circumstances in which the application has received user input that it did not expect and
does not know how to handle. When such as exception is successfully exploited, an attacker can gain unauthorized
access to the database by using the information recovered from seemingly innocuous error messages to pinpoint
flaws in the Web application and discover additional avenues of attack.

Get connected
hp.com/go/getconnected

Current HP driver, support, and security alerts
delivered directly to your desktop

© Copyright 2011–2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without
notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and
services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Adobe is a trademark of Adobe Systems Incorporated. Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.
Oracle Java is a registered trademark of Oracle and/or its affiliates.

4AA4-XXXXENW, Created September 2011

	Contributors
	Overview
	Vulnerability trends
	Decline in commercial vulnerabilities creates a false sense of security
	Changing vulnerability disclosure trends affect discovery and reporting through traditional channels
	Improved software ups the ante for vulnerability reporting
	ZDI information

	Web applications are still a significant risk to the enterprise
	Expanding the vulnerability risk surface—custom Web apps
	Web application vulnerabilities

	Vulnerabilities are rising in nontraditional enterprise infrastructures
	SCADA, VoIP: the forgotten risk
	Newer infrastructure risks: virtual, cloud
	Assessing the mobile risk

	Web application risk: a case study
	Attack trends
	The motivations behind security attacks
	Anonymous takes hacktivism to new levels

	A breakdown of threat data
	Web application attacks

	An in-depth look at attack techniques
	Web application attack surface
	New features, old exploits
	Declarative security—well intended, poorly executed
	Server headers—what do they reveal?

	Web 2.0 applications
	Information leakage
	Application and developer version information
	Credentials and other authentication information
	Server-side attacks
	Honeypot trends
	Client-side attacks

	Attack techniques
	Exploit kits over the past year
	Blackhole exploit kit
	Blackhole obfuscation
	Obfuscation
	JavaScript
	PDF

	Botnets
	Introduction
	Botnet event statistics
	Botnets and C&C–enabled Trojans by family
	ZeuS
	Asprox
	SpyEye
	Sasfis
	Shellbot
	Gbot
	Phatbot
	Powerbot
	Gumblar

	Mitigation thoughts
	Glossary
	CVSS score
	Command execution
	SQL injection
	Blind SQL injection
	Cross-site scripting (XSS)
	Denial of service (DoS)
	Distributed denial of service (DDos)
	Remote file include
	Cross-site request forgery (CSRF)
	Database server error

