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Abstract

Central banks may shift their international reserve holdings in order to protect

themselves ex-ante against the risk of financial sanctions by fiat reserve currency issuers.

For example, from 2016 to 2021, countries facing a higher risk of US sanctions increased

the gold share of their reserves more than countries facing a lower risk of US sanctions.

This paper explores the potential for Bitcoin to serve as an alternative hedging asset. I

describe a dynamic Bayesian copula model to simulate the joint returns of Bitcoin and

other reserve assets under a wide range of plausible sanctions probabilities. Assuming

mean-variance preferences, a modest risk of sanctions significantly increases optimal

gold and Bitcoin allocations. If a central bank cannot acquire sufficient physical gold

to hedge its sanctions risk, the optimal Bitcoin share rises further, suggesting that gold

and Bitcoin are imperfect substitutes. I conclude that sanctions risk may diminish the

appeal of US Treasuries, propel broader diversification in central bank reserves, and

bolster the long-run fundamental value of both cryptocurrency and gold.
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1 Introduction

As cryptocurrencies have become increasingly mainstream vehicles for investing and

transferring wealth, governments have begun to explore potential applications of the tech-

nology. Most prominently, El Salvador began adding Bitcoin to its reserves in September

2021, accumulating over 2,381 Bitcoin worth $57 million as of July 2022. In April 2022,

the Central African Republic adopted Bitcoin as legal tender alongside the CFA franc. And

in February 2022, Ukraine began accepting cryptocurrency donations to fund its military

and purchase humanitarian aid during Ukraine’s war with Russia, ultimately receiving $100

million from supporters across the globe.

The global financial sanctions enforced against Russia following its February 2022 inva-

sion of Ukraine are unprecedented in their scope. Never before has an economy the size

of Russia’s – the 11th largest in the world – been subjected to such a comprehensive, co-

ordinated sanctions effort. Russia’s central bank found its assets frozen by the US, EU,

UK, Switzerland, Japan, Canada, Australia, and South Korea. Ultimately, these major and

minor reserve currency issuers froze approximately $300 billion of Russia’s assets, roughly

half of Russia’s international reserves.

The ability of fiat reserve issuers to freeze transactions, which constitutes a form of

de facto default on the underlying obligations, calls into question fiat reserve currencies’

status as ”safe haven” assets. Therefore, it is timely to explore the question of how, and

to what extent, the risk of financial sanctions may motivate changes in central bank reserve

composition.

I adopt a unique econometric approach to modeling cryptocurrency. Rather than as-

suming that the high realized returns of Bitcoin as of 2022 are likely to persist, I estimate

a Bayesian model with an informative prior, whose parameters I choose to reduce the ex-

pected compound returns of Bitcoin. I use simulations from the model to compute optimal

portfolios as a function of risk aversion. To my knowledge, this is the first paper to quantify

the potential effect of sanctions risk on international reserve allocations. Unlike most of the
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sanctions literature, which estimates the effects of sanctions ex-post, this paper focuses on

understanding the ex-ante effect of sanctions risk.

The paper is structured as follows. Section 2 describes financial sanctions and related

literature. Section 3 discusses evidence that fear of sanctions may motivate central bank

gold holdings. Section 4 outlines features of cryptocurrency and its resistance to sanctions.

Section 5 details the time series model to simulate the returns of Bitcoin and reserve assets,

and Section 6 benchmarks the performance of the model. Section 7 uses the simulations

to demonstrate the effect of sanctions on reserve allocations under a range of plausible

assumptions. Finally, Section 8 concludes, with implications for the renminbi and central

bank digital currencies.

2 Overview of Financial Sanctions

The history of economic sanctions dates back to the blockades of World War I, following

which the League of Nations began employing sanctions in support of foreign policy objec-

tives as an alternative to war. Mulder (2022) describes the usage of economic sanctions as

a coercive tool in the interwar period. Economic sanctions encompass both trade sanctions

(tariffs and embargoes) as well as financial sanctions. In the digital commerce era, financial

sanctions have assumed greater prominence because of the degree of centralization of the

global financial system and the immediacy with which electronic banking services can be

disabled. Zarate (2013) details the expansion of the US Treasury Department’s financial

sanctions programs to assist counterterrorism efforts following the 9/11 attacks. Hufbauer

and Jung (2020) updates Hufbauer, Schott, et al. (2009) and describes more recent develop-

ments in economic sanctions, including the Iran nuclear agreement and Trump tariffs.

In the United States, financial sanctions can be implemented through a legislative or

presidential procedure. In the legislative procedure, Congress passes a law specifying sanc-

tions, and either the President signs the law or Congress overrides the President’s veto. In
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the presidential procedure, the President issues an executive order declaring a state of emer-

gency concerning a particular country, region, or topic, which empowers the US Treasury’s

Office of Foreign Assets Control (OFAC) to issue sanctions. All US persons must comply

with OFAC sanctions, including all persons and entities within the United States, all US

incorporated entities and their foreign branches. If a US person identifies property belonging

to an OFAC-sanctioned entity, the US person must ”block” (freeze) the property – prohibit-

ing transfers or dealings of any kind with regard to the property – unless OFAC grants an

exception or lifts the specific sanction.1 Penalties for failing to comply with OFAC sanctions

can be significant. Fines can reach millions of dollars, and individuals can face jail time.

In April 2022, a researcher received a 63-month sentence, along with a $100,000 fine, for

delivering a presentation about cryptocurrency technology in North Korea.2 Foreign entities

beyond the reach of US law enforcement may face ”secondary sanctions” for conducting

business with sanctioned entities.

Other governing bodies implement various procedures for issuing sanctions. The Euro-

pean Union Common Foreign and Security Policy Council may impose sanctions if all EU

members consent to the proposal. The United Nations Security Council may approve sanc-

tions if nine out of the fifteen members vote in favor, but any permanent member (China,

Russia, France, the United Kingdom, and the United States) may veto the proposal. Perhaps

because of the relative ease of implementing sanctions through unilateral executive action,

the US has sanctioned far more entities than the UN or EU. As of September 2019, the

OFAC list included 8,755 entities, compared with 2,136 for the EU and 1,057 for the UN.3

Partly due to concerns about the overuse of sanctions and unintended effects on vulnerable

groups, the Biden administration announced in October 2021 that it intended to limit its

1OFAC operates several types of sanctions programs. This paper studies the effect of full blocking sanctions
under OFAC’s Specially Designated Nationals And Blocked Persons List (”SDN List”).

2https://www.wsj.com/articles/cryptocurrency-guru-sentenced-to-more-than-five-years-in-prison-over-
north-korea-trip-11649789150

3https://www.tradefinanceglobal.com/wire/accuity-data-reveals-increased-complexity-of-sanctions-
compliance-and-implications-for-global-trade/
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usage of sanctions.4

Empirical evidence concerning the effectiveness of sanctions programs is mixed. Felber-

mayr et al. (2020) compile a global database and find that sanctions are increasingly used

over time; the share of financial sanctions is rising; the main objectives of sanctions are

increasingly related to democracy or human rights; and the success rate of sanctions has

fallen since 1995, averaging 30% across policy objectives. In a firm-level comparison of sanc-

tioned to unsanctioned Russian firms, Ahn and Ludema (2020) show that the 2014 sanctions

caused significant losses in operating revenue, asset values, and employees, but the Russian

government shielded some strategic firms from the full effect of the Western sanctions.

Several central banks currently face or have faced US sanctions. As of July 2022, the

central banks of Russia, Iran, Syria, North Korea, and Venezuela are under US sanctions.

Additionally, after the 2021 Taliban takeover, the Biden administration froze the New York

Fed account belonging to the central bank of Afghanistan, ultimately expropriating the funds

to divide them equally between a trust for the people of Afghanistan and victims of the 9/11

attacks.5 Previously, the US froze the reserves of Iraq following its 1990 invasion of Kuwait

(which President Bush subsequently expropriated in 20036) and temporarily suspended Iraq’s

cash withdrawals in 2015 over concerns that cash was being transported to terrorist groups

and sanctioned Iranian banks.7 In 20088 and 2020,9 the US threatened to freeze Iraq’s

reserves if Iraq expelled US troops from the country.

The countries described above face sanctions for a variety of reasons including launch-

ing external wars, sponsoring terrorism, developing nuclear weapons, repressing protests,

refusing to accept the outcome of elections, and seizing power from a previous government.

4https://www.wsj.com/articles/biden-administration-to-trim-use-of-sanctions-in-a-foreign-policy-shift-
11634600029

5https://www.nytimes.com/2022/02/11/us/politics/taliban-afghanistan-911-families-frozen-funds.html
6https://www.washingtonpost.com/archive/politics/2003/03/21/us-seizes-14-billion-in-frozen-iraqi-
assets/98cbb395-ec84-422e-b825-7a864eea340d/

7https://www.wsj.com/articles/u-s-cut-cash-to-iraq-on-iran-isis-fears-1446526799
8https://www.independent.co.uk/news/world/middle-east/us-issues-threat-to-iraq-s-50bn-foreign-reserves-
in-military-deal-841407.html

9https://www.wsj.com/articles/u-s-warns-iraq-it-risks-losing-access-to-key-bank-account-if-troops-told-to-
leave-11578759629
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Therefore, a central bank cannot preclude the possibility of facing US sanctions if the coun-

try in question simply avoids particular types of activity. Moreover, there is no expiration

date to US financial sanctions. Some sanctions against Iran have been in place since 1979.

3 Sanctions and Central Bank Gold Allocations

Empirical evidence regarding the ex-ante effect of sanctions risk on central bank gold

holdings is helpful to motivate the subsequent discussion of cryptocurrency as a potential

reserve asset.

The primary non-fiat reserve asset is gold. Gold reserves under the physical control of

a central bank are largely beyond the reach of financial sanctions by third parties. For

example, despite facing US financial sanctions, the Central Bank of Venezuela chartered

Russian aircraft to sell its gold reserves in Africa.10 Therefore, a desire to hedge against

financial sanctions risk by fiat reserve currency issuers is potentially one reason why central

banks may accumulate gold reserves.

Since the Great Recession, central banks have steadily added gold to their reserves, as

illustrated in Figure 1. In 2020, the gold share of international reserves reached a 20-year

high of 14.4%.

The distribution of gold shares across central banks is heterogeneous. Figure 2 displays

the distribution conditional on a non-zero gold share. About 20% of central banks do not

own any gold; a few maintain gold shares in excess of 50%. The heterogeneity in gold

allocations across central banks suggests that political and logistical considerations – such

as the cost of transporting and securing physical gold – are as important as a central bank’s

risk tolerance in determining its portfolio composition. Indeed, Aizenman and Inoue (2012)

find that central bank gold holdings are correlated with ”global power” such as the history

of being an empire, the geographic size of the country, and the country’s centrality to the

international financial system.

10https://www.wsj.com/articles/how-7-4-tons-of-venezuelas-gold-landed-in-africaand-vanished-11560867792
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Source: World Gold Council

Figure 1: The quantity of gold in international reserves.
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Figure 2: The distribution of gold shares across central banks that own gold.
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It is also informative to study the changes in gold shares across central banks, and relate

those changes to a variable that could proxy for financial sanctions risk. Military import

deals evince political alignment and require a real commitment of financial and political

capital.11 I obtain annual data from 2017 to 2021 on military imports and exports from

the Stockholm International Peace Research Institute (SIPRI). The financial terms of arms

trade agreements are often undisclosed, so SIPRI computes a Trend Indicator Value (TIV)

based on unit production costs and weapon characteristics that represents the military value

of the items being traded.

Countries that import valuable military equipment from geopolitical rivals of the United

States, particularly China and Russia, plausibly face a heightened risk of U.S. sanctions. In

2017, then-President Trump signed the Countering America’s Adversaries Through Sanctions

Act, providing for sanctions on entities that transact with the Russian defense sector. In

2020, President Trump issued Executive Order 13959, establishing financial sanctions against

certain Chinese military companies. As previously discussed, entities that transact with

sanctioned entities face the risk of secondary sanctions, so importing military goods from

China or Russia raises the importer’s sanctions risk.

I obtain a sample of central bank gold shares from the World Gold Council. I filter the

sample by discarding countries that do not own any gold, or whose TIV military imports from

the US, China, and Russia were zero from 2017 to 2021 inclusive, resulting in 81 countries.

For each country, I define a measure of political alignment, mil import diff, in Equation (1).

The result is a metric ranging from -100 to 100 that indicates the extent of a country’s

military-political alignment with the US (100) or rivals of the US (-100). Averaging over

a 5-year period in Equation (2) helps account for the fact that some military trade deals

require multiple years to plan and execute.

11I eschew using United Nations voting records, which are commonly used to measure political alignment
among countries, because they are not obviously connected to sanctions risk and often constitute cheap
talk.
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Figure 3: The origin of military imports explains changes in central bank gold shares from
Q4 2016 to Q4 2021.

mil import diffi,t =
100(TIVUSA→i;t − TIVChina + Russia→i;t)

TIVUSA + China + Russia→i;t

(1)

mil import diffi =

T=Q4 2021∑
t=Q4 2016

mil import diffi,t/5 (2)

Then, I run the following regression. I choose the log ratio of the gold share as the

outcome variable, rather than the percentage point difference, because of the heterogeneity

in the level of gold shares illustrated in Figure 2.
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ln(
gold sharei,Q4 2021

gold sharei,Q4 2016

) = β0 + β1(mil import diffi) + γ(controlsi) (3)

Without including any controls, Figure 3 displays a scatterplot illustrating the regression

line and its confidence interval.

More detailed regression results are available in Table 1. I compute standard errors

using the heteroskedasticity robust Eicker-Huber-White estimator. Control variables include

groupings based on geographic location and GDP per capita. Regardless of the choice of

controls, the origin of a country’s military imports retains statistically significant explanatory

power over changes in its central bank gold shares from Q4 2016 to Q4 2021.

Table 1: Gold Share Regression Results

Economic
Controls

No Yes No Yes

Geographic
Controls

No No Yes Yes

R2 0.07 0.13 0.22 0.26

mil import diff
Coefficient
(p-value)

-0.0016
(0.009)**

-0.0019
(0.008)**

-0.0021
(0.004)**

-0.0024
(0.006)**

Of course, these regressions do not establish a causal link between sanctions risk and gold

allocations. But this analysis of central bank gold shares does demonstrate robust demand

for a non-fiat reserve asset, especially among countries that may be less trusting of the major

fiat reserve issuers. Cryptocurrencies may be of particular interest for countries with political

or economic disagreements with fiat reserve issuers.

4 Characteristics of Cryptocurrency

Cryptocurrencies are fungible digital tokens, the history of which is stored on a digital

ledger secured by cryptography. The largest and oldest cryptocurrency, Bitcoin, began use
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in 2009; since then, people have created thousands of different cryptocurrencies employ-

ing different digital architectures. As of July 2022, Bitcoin and Ether (the second largest

cryptocurrency) collectively comprise about 60% of the approximately $1.0 trillion market

capitalization of all cryptocurrencies. Since 2018, the prices of Bitcoin and Ether have been

highly correlated, as illustrated in Figure 4. A detailed history and technical description of

cryptocurrency is beyond the scope of this paper, but Hardle, Harvey, and Reule (2020) and

Halaburda et al. (2022) provide an overview.
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Figure 4: The 3-month rolling correlation between Bitcoin and Ether.

A central tenet of Bitcoin and Ethereum, the network that supports the cryptocurrency

Ether, is the immutable public decentralized system, called a blockchain, through which to-

kens are created and transactions are authenticated. The blockchain is pseudo-anonymous in
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that transactions between wallets are public knowledge,12 while the identities of the wallets’

owners are generally not revealed (but sometimes can be inferred based on transaction pat-

terns and other external information). Bitcoin currently operates a ”proof-of-work” process

for authenticating transactions, in which groups of miners (”mining pools”) operating spe-

cialized computing equipment compete to confirm new blocks of transactions. The odds of

winning the competition are proportional to the computing power expended on the task, and

the winner receives both transaction fees and a quantity of newly minted cryptocurrency.

Ethereum operates a ”proof-of-stake” system in which holders of Ether receive transaction

fees and newly minted Ether proportional to the quantity of Ether that they pledge to

authenticate new transactions.

Although proponents of cryptocurrency cite its ”trustlessness” as an advantage over fiat

currencies, Bratspies (2018) points out that cryptocurrencies require different forms of trust.

Specifically, users must trust that the cryptocurrency software itself is secure, that miners

will not collude to attack the integrity of the blockchain, and that the governance process

will not approve of a ”hard fork” that fundamentally alters the blockchain itself or other

parameters of the cryptocurrency.

Decentralized cryptocurrencies are resistant to governmental financial sanctions. A fiat

currency issuer can issue sanctions against particular cryptocurrency wallets, rendering it

illegal for holders of fiat currency to assist the owners of the sanctioned cryptocurrency

wallets with converting their cryptocurrency into fiat currency. Sanctioned individuals may

not be able to use large cryptocurrency exchanges, who are required to comply with sanctions

programs if the exchanges want to continue converting cryptocurrency into fiat currency.

But as long as the issuers of fiat currency do not control the blockchain itself, sanctioned

individuals can continue to send cryptocurrency from one wallet to another. Additionally,

sanctioned individuals could participate in ”off-chain” transactions by providing the private

keys to their cryptocurrency wallet in exchange for goods, services, or other forms of currency,

12Some cryptocurrencies, such as Monero, employ additional measures that obscure transactions.
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as discussed in Luckner, Reinhart, and Rogoff (2021). For example, in April 2022, North

Korean hackers continued to launder $600 million of Ether stolen during a hack of the video

game Axie Infinity, eight days after the US Treasury sanctioned the digital wallet used in the

hack.13 In 2018, Iran began issuing licenses to cryptocurrency miners, who are required to

sell their tokens to the central bank to facilitate sanctions evasion.14 A discussion regarding

stablecoins, which are inherently more centralized than Bitcoin or Ether and therefore not

suitable for evading sanctions, can be found in Appendix A.

Under a proof-of-work system, the ability to censor transactions on the blockchain re-

quires achieving ”majority hash power,” meaning that the censor must control at least 51%

of the computing power employed by all miners. Achieving such a status is not feasible due

to the sheer quantity of computing power dedicated to Bitcoin mining, as well as the amount

of electricity required to power the mining chips. Furthermore, the structure of the Bitcoin

network incentivizes Bitcoin owners to oppose any individual’s acquisition of majority hash

power by purchasing or producing their own mining chips, because majority hash power also

enables a ”double spending attack” that results in the duplication of Bitcoin, which would

likely destroy confidence in the cryptocurrency. In 2014, the Bitcoin mining pool Ghash.io

briefly acquired majority hash power,15 and faced a combination of public criticism, cyber-

attacks, and abandonment by miners that quickly reduced its market share below 50%. No

mining pool has ever acquired majority hash power in Bitcoin since then. The impossibility

of implementing a successful attack against Bitcoin contributes to Bitcoin’s status as the

most valuable cryptocurrency. Moreover, the proof-of-work mechanism establishes a barrier

to the large-scale adoption of an alternative to Bitcoin. Rival proof-of-work currencies tend

to face difficulty attracting miners, since prospective miners could mine Bitcoin and other

established currencies more profitably. This creates a feedback cycle wherein small proof-

of-work currencies are not valuable enough to attract many miners, and therefore remain

13https://www.washingtonpost.com/business/2022/04/23/north-korea-hack-crypto-access/
14https://techcrunch.com/2022/06/19/iran-to-cut-electricity-to-authorized-crypto-miners-report/
15https://www.extremetech.com/extreme/184427-one-bitcoin-group-now-controls-51-of-total-mining-power-
threatening-entire-currencys-safety

13



vulnerable to majority hash attacks, a risk which prevents the small proof-of-work currencies

from becoming more valuable. Indeed, many smaller cryptocurrencies that operate based

on the proof-of-work mechanism have faced majority hash attacks, as described in Shanaev

et al. (2020).
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Figure 5: The proportion of Bitcoin mining, by country. China officially banned Bitcoin
mining in June 2021, but mining operations continued, often via VPN’s that mask the
miners’ locations. The shares for Germany and Ireland are likely inflated due to VPN
services that route traffic through those countries.

Bitcoin miners generally do not comply with sanctions regarding the wallets whose trans-

actions the miners are validating. One Bitcoin mining pool, Marathon, announced in May

2021 that it would not validate transactions involving wallets that appeared on the OFAC
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sanctions list.16 Facing criticism, Marathon reversed itself one month later, noting that its

mining income was far lower than that of its peers. Theoretically, a sanctioned individual

could offer higher transaction fees if necessary to motivate miners to process the individual’s

transactions. The distribution of Bitcoin mining is well diversified and mobile across coun-

tries, as illustrated in Figure 5, complicating efforts by any individual country to censor the

blockchain by regulating Bitcoin mining.

Under Ethereum’s proof-of-stake system, the ability to censor transactions on the blockchain

requires holding a majority of staked cryptocurrency. A sufficient condition to enforce cen-

sorship on the network is the acquisition of a majority of all digital tokens in circulation. Half

of Ether’s market capitalization is approximately $92 billion, as of July 2022. Of course, the

price of Ether would rise if an individual began purchasing large quantities of Ether, so an

enormous expenditure of resources would be required to enforce censorship on the Ethereum

network. In order to defeat the censor, users would need to acquire some of the censor’s

digital tokens, or else implement a ”hard fork” by migrating towards a new copy of the

blockchain with a different distribution of tokens across users, effectively abandoning the

original Ethereum as a dead project. Although network effects will likely support the value

of Ether in the short run, staking Ether does not require a meaningful real-world expenditure

of resources, so Ethereum may be more likely to face serious competition from alternative

networks in the long run than Bitcoin.

The amount of electricity consumed by Bitcoin mining results in a significant negative

environmental externality. According to the International Energy Agency and the Cambridge

Centre for Alternative Finance, Bitcoin mining alone consumes approximately 0.5% of world

energy production as of July 2022. A central bank that purchases significant quantities of

Bitcoin will promote additional Bitcoin mining by increasing the price of Bitcoin, resulting in

additional environmental harm. The environmental externalities of Bitcoin can be thought

of as the cost of decentralization. Countries that are worried about the possibility of US or

16https://www.theblock.co/linked/106865/marathon-ofac-bitcoin-mining-pool-taproot
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EU sanctions will likely find the environmental costs of Bitcoin mining to be an acceptable

tradeoff in return for the benefit of hedging their reserves against sanctions risk.

Appendix B discusses Bitcoin’s liquidity and role as a store of value, noting a ”flight

to safety” effect that appeared in February 2022 immediately following the global sanctions

against the Central Bank of Russia. Reaching the opposite conclusion as Smales (2019), I

argue that Bitcoin meets the minimum requirements to be considered a store of value.

5 Reserve Assets Model

In order to solve portfolio optimization problems including Bitcoin and other reserve

assets, I require a means of generating samples from a plausible joint distribution of future

returns of those assets. A major challenge is that the historical returns of Bitcoin are likely

to severely overstate Bitcoin’s forward-looking expected returns. Between July 1, 2012 and

July 1, 2022 the compound annual return of Bitcoin exceeded 100% per year. It is simply

not realistic to expect such high returns to continue indefinitely, because they are not based

upon the economic fundamentals of cryptocurrency as it exists today.17 Bitcoin’s high returns

were realized by early adopters, who made a highly risky investment (consisting of computing

equipment and electricity) into a brand new digital payment system whose usefulness and

longevity were both unclear.18 Today, cryptocurrencies are far more mainstream; there is no

reason to expect Bitcoin’s future returns to beat optimistic forecasts of the stock market by

an entire order of magnitude.19

Any statistical technique based on bootstrapping, maximum likelihood, or moment-

matching will produce draws from a distribution of Bitcoin returns that resemble Bit-

17The concept that expected returns fall as asset prices rise is well documented in the context of the stock
market. For example, after a stock joins the list of the top 10 largest US stocks, its 10-year expected return
is 1.5% below the market return. See: https://www.dimensional.com/us-en/insights/large-and-in-charge-
giant-firms-atop-market-is-nothing-new

18To emphasize the riskiness of an early-stage investment into Bitcoin, consider the thousands of cryptocur-
rencies that are nearly worthless today.

19A combination of high realized returns and declining expected returns could be explained by a declining
rare disaster risk associated with Bitcoin, due to Bitcoin’s increasing rate of adoption and increasing
hashrate, both of which reduce the likelihood of a sudden collapse or a successful attack.
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coin’s historical returns, and likely overstate Bitcoin’s future returns. Therefore, I employ a

Bayesian approach, in which I use an informative prior to adjust Bitcoin’s expected returns

to a more reasonable level. I do not claim to have particular knowledge about the expected

returns of any asset, including Bitcoin. I provide a framework for portfolio optimization

in the context of sanctions where the end-user can explore optimal allocations by encoding

his or her own beliefs. Such beliefs may be derived from principles of economics or other

background knowledge available to the investor.

Although DCC-MGARCH models are almost always solved via the maximum likelihood

technique, a small literature takes a Bayesian approach similar to this paper. Fioruci, Ehlers,

and Louzada (2014) develop an R software package to estimate Bayesian DCC-MGARCH

models using a handful of skewed and heavy-tailed error distributions. Shiferaw (2019) uses

a Bayesian DCC-MGARCH model to study the correlation between energy and agricul-

tural commodity prices. Tang and Aruga (2022) use a Bayesian DCC-MGARCH model to

investigate relationships among the fossil fuel, clean energy stock, gold, and Bitcoin markets.

5.1 Time Series Model

This model combines the AGARCH specification of Engle and Ng (1993) with the DCC

framework of Engle (2002), thereby capturing several important features of financial time

series. The model specification is outlined below.

5.1.1 Univariate Equations

In equation (4), I model the log returns of each asset. I assume the mean return is not

time varying; accordingly, I do not capture low-frequency features of financial data such as

long-horizon mean reversion. Such effects are difficult to discern from noise at the daily

frequency.

ri,t = ln(pi,t/pi,t−1) = µi + ϵi,t, i = 1, 2, . . . N. (returns of ith asset) (4)

17



In equation (5), I model the volatility of returns as having a conditional Student-t dis-

tribution, allowing for heavy-tailed returns. When estimating the model, I further constrain

νi > 3 so that the first three moments of the error distribution are finite. While finite mo-

ments are not a prerequisite for Bayesian inference, they tend to produce more reasonable

volatility estimates.

ϵi,t|r⃗1, r⃗2, . . . ⃗rt−1 ∼ Student-t (0,
√
σ2
i,t(νi − 2)/νi, νi) (innovations for ith asset) (5)

In equation (6), I employ a standard GARCH(1,1) specification for modeling the time-

varying volatility. The GARCH component produces heavy-tailed returns and volatility clus-

tering. The AGARCH δi term allows for asymmetric news impact effects: negative shocks

increase volatility moreso than positive shocks. Several different potential specifications cap-

ture this effect (EGARCH, GJR-GARCH, APARCH) but only the AGARCH specification

is differentiable over its entire domain, which is helpful for the Bayesian sampling procedure.

σ2
i,t = ωi + αi(ϵi,t−1 − δi)

2 + βiσ
2
i,t−1 (variance of ith asset) (6)

5.1.2 Multivariate Equations

In equations (7), (8), and (9), I compute the standardized residuals, the dynamic condi-

tional covariance, and the dynamic conditional correlation respectively. The DCC compo-

nent of the model allows the correlations to vary over time in a mean-reverting fashion, with

clustered periods of high and low correlation.

η⃗t = diag(σ⃗t)
−1(r⃗t − µ⃗) (standardized residuals) (7)

Qt = S + a( ⃗ηt−1 ⃗ηt−1
T − S) + b(Qt−1 − S) (covariance) (8)
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Rt = diag(Qt)
−0.5Qtdiag(Qt)

−0.5 (dynamic correlation) (9)

Rather than modeling the GARCH error term using a multivariate distribution, I use a

copula to correlate the univariate marginal distributions of each asset. The theory of copulas

was originally developed by Sklar (1959) and Sklar (1973), who proved that any continuous

joint distribution can be modeled by linking its marginal distributions with a unique copula.

Copula models are commonly used for risk management in finance; Patton (2012) provides a

recent overview. The copula approach provides flexibility to model the marginal distributions

and the manner of their correlation separately. There are many copulas that produce a wide

variety of dependence structures. Two popular copulas are the Gaussian copula, which

does not feature tail dependence, and the Student-t copula, in which the joint probability

of extreme values is higher than the Gaussian copula. Nguyen et al. (2020) find that the

Student-t copula provides the best fit when applying a GJR-GARCH model to a set of

reserve currencies and gold. Accordingly, I use the Student-t copula, whose density is given

in Equation (10).

ϵ⃗t ∼
tRt,λ

(
T−1
λ (F (ϵ1,t)), T

−1
λ (F (ϵ2,t)), . . . , T

−1
λ (F (ϵn,t)

)∏N
i=1 tλ

(
T−1
λ (F (ϵi,t))

) (Student-t copula density) (10)

Specifically, tRt,λ refers to the multivariate Student-t density with correlation matrix20 Rt

and degrees of freedom λ, tλ refers to the univariate Student-t density, T−1
λ refers to the in-

verse Student-t distribution function, and F (·) refers to the marginal cumulative distribution

for each asset (given in Equation (5)).

When estimating this model, I include five assets: Bitcoin, gold, 2-year US Treasury

bonds, 2-year Euro bonds (measured in USD), and a global market capitalization-weighted

stock index. I do not separately model Ether because of the high correlation between Bitcoin

and Ether. However, the subsequent discussion regarding Bitcoin could be extrapolated to

20Formally, the correlation matrix is given by λ
λ−2Rt, but as described in Demarta and McNeil (2005), the

Student-t copula is invariant to a strictly increasing transformation of its components. So the Student-t
dispersion matrix may be interpreted as a correlation matrix, provided that λ > 2.
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a market capitalization-weighted portfolio of both Bitcoin, Ether, and other smaller non-

stablecoin cryptocurrencies.

In adopting a dynamic Bayesian copula approach, this paper is most closely related to So

and Yeung (2014), who also adopt a dynamic conditional correlation approach for a variety

of copula functions, using a more granular vine copula structure that estimates the param-

eters of a separate copula function for each pair of assets. However, So and Yeung (2014)

estimate their models using maximum likelihood, not a Bayesian approach. In this setting,

vine copulas would introduce significantly more computational complexity without much

additional benefit compared to a multivariate copula, because the estimated correlations

across asset classes are moderate-to-low and the estimated tail-dependence coefficients21 are

all well below 0.1. Bayesian approaches that utilize vine copulas are more appropriate when

modeling a collection of similar assets, and often involve approximations to the posterior

distribution, as in Kreuzer and Czado (2019).

Because this model features a small number of assets, I avoid the curse of dimensionality,

described by Pakel et al. (2021), that would hinder a Bayesian approach to modeling a large

set of assets. Specifically, the number of parameters in this model grows proportional to

the square of the number of assets. Although central banks have been diversifying their

reserves away from US dollars and euro in the last two decades, as documented in Arslanalp,

Eichengreen, and Simpson-Bell (2022), high-quality US dollar bonds, euro bonds, public eq-

uities, and gold still comprise over 80% of global reserves. Moreover, one could approximate

the performance of many other assets, such as corporate bonds, by forming linear combina-

tions of Treasuries and stock. Therefore, this model captures the set of investment options

available to central banks.

21A measure of the probability that the return of one asset exceeds a particular quantile, conditional on
another asset exceeding the same quantile, as the quantile approaches 1 or 0. Tail dependence coefficients
vary between 0 and 1; for a Gaussian copula, tail dependence is equal to 0.
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5.2 Priors

I use uninformative priors for the volatility and correlation processes, operating upon the

assumption that historical volatility relationships among these assets are representative of

the future.

However, I set informative priors for the mean returns of the assets. I considered several

factors in selecting the Bitcoin prior. As described in Section 4, Bitcoin is a real asset in

finite supply, so its long-run return should be related to the rate of inflation. But unlike

gold, the effective supply of Bitcoin can only shrink in the long run, since Bitcoin can be

rendered permanently inaccessible when owners lose, forget, or discard their private keys.

The blockchain analysis firm Chainalysis found that about 20% of Bitcoin had not been

touched in over 5 years, as of June 2020.22 In the long run, perhaps 1% of Bitcoin will be

”lost” each year, boosting Bitcoin’s expected return to 1% above inflation. From another

perspective, Makarov and Schoar (2020) show that daily Bitcoin exchange volume explains

up to 85% of variation in the Bitcoin price, suggesting that the long-run return of Bitcoin

may be tied to the gross rate of wealth creation. Over the long run, wealth tends to remain a

constant share of GDP, although wealth grew slightly faster than GDP in the 21st century as

of 2020, according to Woetzel et al. (2021). If long-run real GDP growth averages 2%, then

the long-run return of Bitcoin could be similar. Averaging these two approaches, I set the

mean return prior for Bitcoin at 1.5% above that of gold (i.e., 1.5% above 2-year expected

inflation).23

I set the expected returns of Treasuries and Euro bonds equal to their current yield

as of September 16, 2022 (assuming uncovered interest parity holds in expectation for the

Euro bonds), and I set the expected return of gold equal to the 2-year expected inflation

rate. Based on Asness (2021), who finds that the expected return of both US and developed

22https://blog.chainalysis.com/reports/bitcoin-market-data-exchanges-trading/
23Setting the expected return of Bitcoin above that of gold suggests that Bitcoin commands a risk premium
over gold, which seems reasonable since Bitcoin is far more volatile than gold, and Bitcoin’s volatility is
not clearly diversifiable. Indeed, Liu and Tsyvinski (2018) find that the performance of cryptocurrency is
not explained by common macroeconomic risk factors.
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international equities is about 5% above cash after adjusting for valuation changes, I set the

expected return of world stock equal to 5% above that of Treasuries. Table 2 contains a list

of priors, and an explanation of each.
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Table 2: Priors on Model Parameters

Parameter Prior Notes

µ⃗
Normal(m, σ), where

m = (4.68, 3.18, 3.85, 3.85, 8.85)′/253
σ = (1.0, 0.5, 0.02, 0.02, 0.50)′/253

See above. Annual returns are
divided by 253 trading days in

the year.

ω⃗
Cauchy(0, 0.1)

constrained within the interval [0,1]
Gelman (2006) suggests the
half-Cauchy distribution as a
prior for variance parameters.

α⃗ Uniform(0, 1) Constraints that the variance
process is mean-reverting.

β⃗ Uniform(0, 1-α⃗) Constraints ensure that the
variance process is
mean-reverting.

δ⃗
Cauchy(0, 0.1),

constrained within the interval [0,1]
Ensures that negative shocks
have a stronger impact on the
variance at time t than positive

shocks.

S Lewandowski-Kurowicka-Joe(1) Uniform prior over the set of
correlation matrices.

a Uniform(0,1) Constraints ensure that the
correlation process is

mean-reverting.

b Uniform(0,1-a) Constraints ensure that the
correlation process is

mean-reverting.

ν⃗ ν⃗ − 3 ∼ Gamma(2,0.1) Juarez and Steel (2010) suggest
this Gamma prior for Student-t

degrees of freedom. ν⃗ > 3
ensures that the first three
moments of the marginal
distributions are finite.

λ λ− 2 ∼ Gamma(2,0.1) Juarez and Steel (2010) suggest
this Gamma prior for Student-t

degrees of freedom. λ > 2
ensures that the covariance of
the multivariate copula is finite.
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5.3 Data

I obtain daily historical Bitcoin and gold prices at the close of each business day from

investing.com, 2-year US Treasury yields from the St. Louis Federal Reserve, and 2-year

Euro bond yields from the European Central Bank. For world stock, I obtain the daily

returns of the Vanguard Total World Stock Index ETF, adjusted for dividends, which tracks

the FTSE Global All Cap Index.

Bitcoin’s early history–when it was regarded moreso as a science experiment rather than

a legitimate asset class–is likely to be less informative of Bitcoin’s future returns compared

to Bitcoin’s modern history. Additionally, the correlation between Bitcoin and the stock

market sharply rose starting in March 2020, as illustrated in Figure 6. Because I want to

capture this higher correlation, I begin my sample on March 1, 2020, continuing until July

22, 2022.
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Figure 6: The estimated rolling correlation between Bitcoin and the FTSE Global All Cap
Stock Index.

5.4 Computation

I sample from the posterior distribution over the parameter set {µ⃗, ω⃗, α⃗, β⃗, γ⃗,S, a⃗, b⃗, ν⃗, λ}

using the Bayesian modeling software Stan developed by Carpenter et al. (2017). Stan

implements a No-U-Turn sampler, a variant of Hamiltonian Monte Carlo. When running

the sampler, I use 6 chains, with 1084 samples per chain, including 250 warmup iterations

per chain that I discard. Figure 7 presents heatmaps of the mean return parameters for

Bitcoin and gold.

In order to speed up the computation of this model, I implement an approximation to

the inverse Student-t distribution, which must be computed many times as part of the mul-

tivariate Student-t copula in Equation (10). Computing the inverse Student-t distribution
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using root-finding procedures, such as using the inverse regularized beta function, is about

2x - 3x slower. The approximation, which combines two power series, achieves a maximum

error of 0.15% for all degrees of freedom and all quantiles between 0.00001 and 0.99999. A

description of the approximation can be found in Appendix C.
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Figure 7: A heatmap of the posterior mean return parameters for Bitcoin and gold.

The unconditional standard deviation of asset i is given by:

Std(ri) =

√
ωi + αiγ2i
1− αi − βi

(unconditional standard deviation) (11)

For each draw from the model posterior, I compute the unconditional standard deviation,

and compare the resulting distribution against the sample standard deviation. Figure 8

displays the result for Bitcoin and gold. The posterior unconditional standard deviation is
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heavy-tailed, especially for Bitcoin.
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Figure 8: A heatmap of the posterior long-run standard deviation for Bitcoin and gold,
compared with the sample standard deviation (red lines).

The relationship between Bitcoin’s degrees of freedom parameter – which controls the

extent of heavy-tailed behavior of its marginal distribution – and the long-run volatility

of Bitcoin is displayed in Figure 9. The crescent-like shape of the posterior distribution

indicates a relationship between samples in which Bitcoin is especially high risk (low degrees

of freedom, high standard deviation), and samples in which Bitcoin is lower risk (high degrees

of freedom, low standard deviation).

Lastly, it is informative to examine the distribution of S, the long-run correlations across

assets. Table 3 shows that Bitcoin is mostly uncorrelated with all reserve assets, except the

stock market, with which Bitcoin has a moderate positive correlation.
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Figure 9: A heatmap of the posterior degrees of freedom of Bitcoin, compared with Bitcoin’s
posterior long-run standard deviation. The sample standard deviation is plotted as a red
line.

Table 3: Median Posterior Long-Run Correlations

Bitcoin Gold Treasuries Euro bonds World stock

Bitcoin 1

Gold 0.07 1

Treasuries -0.01 0.21 1

Euro bonds 0.16 0.41 0.18 1

World stock 0.34 0.16 -0.08 0.36 1
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6 Model Validation

Gelman et al. (2013) describe posterior predictive checks as a means of validating Bayesian

models by simulating draws from the posterior distribution, and comparing those draws to

the observed data. Because I conduct portfolio choice optimization over simulated 3-month

periods, I simulate 3 months of returns (63 trading days) from the posterior distribution and

compare the simulations to rolling 3-month periods from the data in various ways.

The subsequent sections illustrate several posterior predictive checks for Bitcoin. Checks

for other assets in the model will be available in an online appendix. Overall, the model

captures the characteristics of Bitcoin over 3-month periods.

6.1 Gross Return

Figure 10 demonstrates that the simulated returns are significantly more pessimistic than

rolling 3-month periods in the sample. This is an intended consequence of the informative

prior.
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Figure 10: A comparison of gross returns from the model simulations, and gross returns from
rolling 3-month periods in the data.

6.2 Correlation

Figures 11 and 12 compare simulated correlations between Bitcoin and each other asset

to 3-month rolling periods in the data. In all cases, the simulations are in strong agreement

with the data. Other comparisons can be found in the appendix.
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Figure 11: A comparison of the correlation between Bitcoin and gold from the model simu-
lations, and the same correlation from rolling 3-month periods in the data.
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Figure 12: A comparison of the correlation between Bitcoin and world stock from the model
simulations, and the same correlation from rolling 3-month periods in the data.
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6.3 Standard Deviation

Figure 13 shows that the standard deviation of Bitcoin’s log returns in the simulations

aligns well with rolling periods in-sample. The standard deviation of the simulations has a

long right tail.
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Figure 13: A comparison of the standard deviation of Bitcoin from the model simulations,
and the same standard deviation from rolling 3-month periods in the data.

6.4 Skewness

Figure 14 demonstrates that the skewness in the Bitcoin simulations is centered at zero,

because of the symmetric Student-t distribution of the error term. The simulations assign

less mass to the left tail of the skewness distribution, compared to the sample.

While GARCH models are often estimated using skewed distributions for the error term,
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doing so is not practical with an informative prior on the mean return. If the mean return is

time-invariant, then the location parameter of the skewed distribution must shift every time

period as a function of the skewness and variance, which is not computationally feasible. In

my model, although the log returns are unskewed, the gross returns are positively skewed

(as a result of the exponential transformation) consistent with the findings of Farago and

Hjalmarsson (2019).
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Figure 14: A comparison of the skewness of Bitcoin from the model simulations, and the
same skewness from rolling 3-month periods in the data.

6.5 Excess Kurtosis

Figure 15 shows that the simulations slightly understate the kurtosis of Bitcoin (by

contrast, the simulations slightly overstate the standard deviation, in Figure 13). It is
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plausible that the extreme tail risk posed by Bitcoin gradually declined over time as Bitcoin

becomes more widely adopted, so that the kurtosis in-sample overstates Bitcoin’s tail risk

measured today.
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Figure 15: A comparison of the excess kurtosis of Bitcoin from the model simulations, and
the same excess kurtosis from rolling 3-month periods in the data.

7 Portfolio Choice Optimization

According to the International Monetary Fund Guidelines for Foreign Exchange Reserve

Management (2005), central banks tend to review the performance of their reserves quar-

terly. Therefore, I simulate quarters of returns (63 trading days) from the statistical model.

I assume no leverage and no shorting.

After drawing 250,000 simulations from the dynamic Bayesian model, I employ a rejection
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sampling procedure designed to ensure that the samples are plausible and the portfolio

optimization process is numerically stable. It is likely that the heavy-tailed distributions used

in my GARCH model, combined with the uncertainty in the long-run variance of the assets,

overstate the amount of probability mass in the far tails of the distribution. Additionally,

my model does not capture lower-frequency mean-reversion that might reduce the variance.

To correct this misspecification, I compute the gross return of each asset for each quarterly

sample, and I reject the sample if, for any asset, the corresponding cumulative log return is

outside the interval (63 ∗Eµi − log(k), 63 ∗Eµi + log(k)). I compute the interval width k by

calculating the square of the maximum gain or loss across all 3-month rolling periods in the

data. For example, if Bitcoin’s best performance across rolling periods in the sample was

a 4x return, and its worst performance was a 0.5x return, I set k = max(4, 1/0.5)2 = 16.

This rejection sampling results in discarding less than 0.5% of the simulated data, but

ensures that all accepted samples are economically plausible and the sample variances are

numerically stable. Moreover, this procedure preserves the dynamic structure of returns and

average compound return within accepted samples.

The portfolio optimization process only considers financial characteristics of the reserve

assets. Of course, central banks face many other considerations when allocating their port-

folios. In particular, central banks may prefer to align their reserve currency composition

with the currency composition of their imports, external debts, and the currency peg (if

any). Matching the currency composition of reserve assets with the currency composition of

consumption minimizes variability measured in units of consumption. I address these factors

(which are exogenous to my model) by implementing constraints, detailed below, for some

optimizations that include the risk of financial sanctions. Those constraints correspond to

global average reserve shares. Holding the traditional reserve assets in fixed proportions can

also be interpreted as enforcing a desire to minimize transaction costs, especially regarding

costlier transactions in Bitcoin and physical gold. Insofar as the inputs for the optimiza-

tion procedure are derived from a Bayesian statistical analysis, this approach is analogous

36



to that of Black and Litterman (1992), who adapt the classic mean-variance framework of

Markowitz (1952) in a Bayesian setting. Moreover, my mean-variance approach is similar to

that of Papaioannou, Portes, and Siourounis (2006), who use a mean-variance framework to

estimate the optimal euro share of reserves.

When modeling sanctions, I treat the sanctions probabilities as exogenous relative to the

central bank’s decisionmaking. I am unaware of any instance where a central bank’s actions

provided the primary impetus for a third party to freeze the central bank’s reserves. Rather,

sanctions result from political decisions made by leaders external to the central bank, of

which the central bank probably would not have advance notice. I assume that the US and

EU may separately choose to apply sanctions to the central bank, resulting in the total loss

of the central bank’s US Treasuries or Euro bonds, but leaving the central bank’s gold and

cryptocurrency untouched.24 I assume that US sanctions result in a 2/3 loss in the value

of the global stock holdings, while EU sanctions result in a 1/3 loss (a total loss occurs if

both US and EU sanctions are applied). In my base case, the probability of US sanctions

is 1/100, the probability of EU sanctions is 1/200, and the correlation coefficient between

the two is 0.4. I implement the correlation across sanctions probabilities with a Gaussian

copula. I conduct sensitivity analysis by varying these parameters, as shown in Table 4.

24In assuming that gold is not affected by sanctions, I implicitly assume that the central bank retains physical
custody of its gold, rather than storing its gold within third-party custodians such as the vaults of the
New York Fed. I do not account for the cost of transporting or storing gold.
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Table 4: Scenarios for Portfolio Optimization with Sanctions

Scenario US Sanction
Probability

EU Sanction
Probability

US & EU
Correlation

Base Case 1/100 1/200 0.4

High Risk 1/10 1/20 0.4

Low Risk 1/1000 1/2000 0.4

High Correlation 1/100 1/200 0.8

Low Correlation 1/100 1/200 0

To implement mean-variance preferences, I solve the following optimization problem,

where ψ is the degree of risk aversion:

maximize
w⃗

Nsim∑
i=1

xi
Nsim

− ψ

Nsim∑
j=1

(xj − 1/Nsim

∑Nsim

k=1 xk)
2

Nsim

subject to wi ≥ 0, i = 0, . . . , Nassets,

Nassets∑
i=1

wi = 1.

(12)

xi is the geometric return resulting from the ith simulation, and 0 ≤ Ωk ≤ 1 is an

indicator for the extent of sanctions applied to asset k:

xi(w⃗) =

(
k=Nassets∑

k=1

Ωkwk

T=63∏
t=1

exp(ri,k,t)

)1/63

− 1 (13)

Two aspects of this optimization process are noteworthy. First, I assume that the central

bank does not rebalance cross assets within the quarter. Chinn, Ito, and McCauley (2021)

find mixed evidence regarding whether central banks rebalance. By assuming no rebalancing,

I avoid the necessity of accounting for transaction costs regarding physical gold and Bitcoin,
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which are likely to be much more costly than transactions in fiat assets. Additionally,

without rebalancing, the timing of sanctions within the quarter does not affect the final

portfolio value, which simplifies the optimization procedure.

Second, I operate using the geometric return rather than the expected return. The

geometric return is the best measure of performance over longer periods of time (such as

63 trading days), because the geometric return accounts for volatility decay. As Hughson,

Stutzer, and Yung (2006) point out, the expected return of highly volatile assets is much

higher than their compound return, because an asset which experiences a sequence of equal

percentage gains and losses does not return to its starting value. Accounting for volatility

decay over the appropriate time horizon is particularly important when modeling Bitcoin,

which will appear more attractive over shorter holding periods where the effect of volatility

decay is less pronounced. Computing the geometric return over 63 trading days produces

results that are similar to those that I would obtain from optimization using the continuously-

compounded log returns, a procedure that Zhang (2021) explores.

7.1 Without Sanctions

Figure 16 displays optimal shares without sanctions. The results show that an investor

will blend an increasing share of a safe asset (Treasuries) with a set of risky assets (stocks

and cryptocurrency) as the investor becomes more risk averse. The investor does not hold

Euro bonds because the exchange rate risk is not compensated, and similarly, gold is not

particularly attractive as long as Treasuries pay a positive real rate of return. Even the most

risk-averse investor holds 2-3% in Bitcoin.25

25As a point of comparison, El Salvador’s Bitcoin represents about 1.4% of its international reserves, as of
September 2022.
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Figure 16: Optimal asset shares with mean-variance preferences.

7.2 With Sanctions, Varying All Shares

Figure 17 displays optimal Bitcoin shares in the mean-variance framework and the base

sanctions case. Sanctions motivate major changes in the portfolio shares. Notably, the most

risk-averse investor will diversify across all five assets, gold becomes far more attractive,

Euro bonds are more appealing than US Treasuries due to their lower sanctions risk, and

the optimal Bitcoin share rises to about 5%.
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Figure 17: Optimal asset shares with mean-variance preferences and sanctions.

7.3 With Sanctions, Varying Bitcoin Only

The allocations proposed in Figure 17 may not be feasible for some central banks, who

cannot acquire or store such a large quantity of physical gold.26 Furthermore, as previously

mentioned, central banks may prefer (to the extent possible) matching their currency com-

position with the currency composition of their imports and external debts. Therefore, I

repeat the portfolio optimization varying only the Bitcoin share, assuming that the rest of

the portfolio consists of 12% gold, 51% US Treasuries, 17% Euro bonds, and 20% world

stock. These percentages approximately correspond to global averages. Accordingly, this

analysis addresses the question of how much Bitcoin a representative central bank might

want to add to its existing reserve holdings in order to address its sanctions risk, without

26About $150 billion of gold, or 3,000 metric tons, is mined every year.
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radically altering its existing holdings.

Figures 18 and 19 display results when varying only the Bitcoin share. In this case, the

central bank will hold a significant share of Bitcoin to hedge against sanctions, especially

when the US and EU sanctions are highly correlated.
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Figure 18: Optimal Bitcoin shares with mean-variance preferences and sanctions, varying
only Bitcoin.
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Figure 19: Optimal Bitcoin shares with mean-variance preferences and sanctions, varying
only Bitcoin.

7.4 With Sanctions, Varying Gold and Bitcoin

To explore the extent to which gold and Bitcoin are substitutes as hedges against sanc-

tions risk, I vary both the gold and Bitcoin share, assuming that the rest of the portfolio

is allocated 58% to Treasuries, 19% to Euro bonds, and 23% to world stock (approximate

global averages).

Figures 20 and 21 display the results. Although the central bank holds additional Bitcoin

compared to the scenario without sanctions, gold is the preferred asset to hedge against

sanctions risk. Specifically, the risk of international sanctions rationalizes holding gold even

when Treasuries offer less volatility and a positive real return. Moreover, in the lowest risk

case, the optimal gold share rises as a function of risk aversion.
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Figure 20: Optimal gold shares with mean-variance preferences and sanctions, varying gold
and Bitcoin.
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Figure 21: Optimal Bitcoin shares with mean-variance preferences and sanctions, varying
gold and Bitcoin.
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8 Conclusion

The risk of financial sanctions by major fiat reserve currency issuers has significant im-

plications for central banks, some of whom may not be able to count on US Treasuries or

AAA-rated Euro bonds as safe assets. Indeed, in the presence of sanctions, there is no to-

tally safe asset. Cryptocurrencies offer some protection against sanctions, but introduce the

risk of high price volatility. The price of gold is also more volatile than that of Treasuries

or Euro bonds. Although holding physical gold also provides protection against sanctions,

gold is less liquid than fiat assets, and assuming physical custody of gold entails significant

logistical and security costs.

There are several avenues for further research. It is possible that different copulas and

error distributions may generate even more realistic simulations. The objective function

could be modified in many other ways, such as to express loss aversion. A model featuring

rebalancing and portfolio adjustment costs might also be more realistic, at the expense of

introducing additional parameters. The outputs of this model – optimal portfolio shares as

a function of risk aversion and sanctions risk – could be aggregated across a distribution of

countries to form demand curves for each asset, creating a general equilibrium model that

could be used to estimate the implicit cost of US financial sanctions in terms of their effect

on US or EU interest rates.

To the extent that China’s economic and political objectives do not align with those of

the US and EU, it is conceivable that sanctions risk by the Chinese government is negatively

correlated with that of the US and EU. This ”feature” of the renminbi may boost its at-

tractiveness as a reserve asset, and reduce the appeal of cryptocurrency for countries that

hold renminbi. Like cryptocurrency, the optimal renminbi allocation rises as the correlation

between US and EU sanctions rises.

If a central bank does decide to purchase cryptocurrency, the central bank faces a choice

of whether to publicly reveal that decision. Choosing to conceal the central bank’s Bitcoin

allocation might further stymie external attempts to freeze the central bank’s assets. Fer-
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ranti (2022) discusses the fact that many central banks do not disclose their fiat reserve

currency composition. Revealing the central bank’s cryptocurrency wallets enables public

verification of the central bank’s assets, but requires the central bank to accept scrutiny

regarding its choice to invest in a highly volatile asset. Aizenman and Inoue (2012) find that

central banks tend to underreport their gold holdings to avoid criticism when the price of

gold declines.

Lastly, central bank digital currencies may enhance the benefits of cryptocurrency. The-

oretically, a central bank could conduct a foreign exchange intervention relying solely upon

domestic payments infrastructure by offering to sell the central bank’s cryptocurrency to

holders of the central bank’s digital currency. In that sense, a country’s decision to embrace

cryptocurrency may boost its resilience to economic shocks.

47



References

Abramowitz, Milton and Irene Stegun, eds. (1972). Handbook of Mathematical Functions

With Formulas, Graphs, and Mathematical Tables. 10th ed. National Bureau of Stan-

dards: Applied Mathematics Series.

Ahn, Daniel P. and Rodney D. Ludema (2020). “The sword and the shield: The economics

of targeted sanctions.” In: European Economic Review 130, p. 103587.

Aizenman, Joshua and Kenta Inoue (2012). Central Banks and Gold Puzzles. Working Paper

17894. NBER.

Arslanalp, Serkan, Barry Eichengreen, and Chima Simpson-Bell (Mar. 2022). The Stealth

Erosion of Dollar Dominance: Active Diversifiers and the Rise of Nontraditional Reserve

Currencies. Working Paper WP/22/58. IMF.

Asness, Cliff (Mar. 2021). The Long Run Is Lying to You. Tech. rep. AQR Capital Manage-

ment.

Aysan, Ahmet Faruk et al. (Jan. 2019). “Effects of the geopolitical risks on Bitcoin returns

and volatility.” In: Research in International Business and Finance 47, pp. 511–518.

Biais, Bruno et al. (Feb. 2022). “Equilibrium Bitcoin Pricing.” In: Journal of Finance (forth-

coming).

Black, Fischer and Robert Litterman (1992). “Global Portfolio Optimization.” In: Financial

Analysts Journal 48(5), pp. 28–43.

Bratspies, Rebecca M. (2018). “Cryptocurrency and the Myth of the Trustless Transaction.”

In: Michigan Technology Law Review 25 (1).

Carpenter, Bob et al. (2017). “Stan: A Probabilistic Programming Language.” In: Journal

of Statistical Software 76 (1), pp. 1–32.

Cheah, Eng-Tuck and John Fry (2015). “Speculative bubbles in Bitcoin markets? An em-

pirical investigation into the fundamental value of Bitcoin.” In: Economics Letters 130,

pp. 32–36.

48



Chinn, Menzie, Hiro Ito, and Robert McCauley (Aug. 2021). Do Central Banks Rebalance

Their Currency Shares? Working Paper 29190. NBER.

Demarta, Stefano and Alexander McNeil (2005). “The t-Copula and Related Copulas.” In:

International Statistical Review 73(1), pp. 111–129.

Engle, Robert (2002). “Dynamic Conditional Correlation: A Simple Class of Multivariate

Generalized Autoregressive Conditional Heteroskedasticity Models.” In: Journal of Busi-

ness & Economic Statistics 20 (3), pp. 339–350.

Engle, Robert and Victor Ng (1993). “Measuring and Testing the Impact of News on Volatil-

ity.” In: Journal of Finance 48(5), pp. 1749–1778.

Farago, Adam and Erik Hjalmarsson (June 2019). Compound Returns. Working Paper 767.

Department of Economics and Centre for Finance, University of Gothenburg.

Felbermayr, Gabriel et al. (2020). “The global sanctions data base.” In: European Economic

Review 129, p. 103561.

Ferranti, Matthew (June 2022). Estimating the Currency Composition of Foreign Exchange

Reserves. Working Paper 2206.13751. arXiv.

Fioruci, Jose A., Ricardo S. Ehlers, and Francisco Louzada (2014). BayesDccGarch - An

Implementation of Multivariate GARCH DCC Models. Tech. rep. 1412.2967. arXiv.

Gelman, Andrew (2006). “Prior distributions for variance parameters in hierarchical models.”

In: Bayesian Analysis 1(3), pp. 515–533.

Gelman, Andrew et al. (2013). Bayesian Data Analysis. 3rd ed. Chapman and Hall/CRC.

isbn: 1439840954.

Guidelines for Foreign Exchange Reserve Management (2005). Research Report. IMF.

Halaburda, Hanna et al. (2022). “The Microeconomics of Cryptocurrencies.” In: Journal of

Economic Literature 60(3), pp. 971–1013.

Hardle, Wolfgang Karl, Campbell R. Harvey, and Raphael C. G. Reule (2020). “Understand-

ing Cryptocurrencies.” In: Journal of Financial Econometrics 18(2), pp. 181–208.

49



Harmson, Stephen (Nov. 1998). Gold as a Store of Value. Research Study No. 22. World

Gold Council.

Hayes, Adam S. (2019). “Bitcoin price and its marginal cost of production: support for a

fundamental value.” In: Applied Economics Letters 26 (7), pp. 554–560.

Hufbauer, Gary Clyde and Euijin Jung (2020). “What’s new in economic sanctions?” In:

European Economic Review 130, p. 103572.

Hufbauer, Gary Clyde, Jeffrey Schott, et al. (2009). Economic Sanctions Reconsidered.

3rd ed. Peterson Institute for International Economics. isbn: 9780881324129.

Hughson, Eric, Michael Stutzer, and Chris Yung (2006). “The Misuse of Expected Returns.”

In: Financial Analysts Journal 62 (6), pp. 88–96.

Juarez, Miguel and Mark Steel (2010). “Model-Based Clustering of Non-Gaussian Panel Data

Based on Skew-t Distributions.” In: Journal of Business & Economic Statistics 28(1),

pp. 52–66.

Klages-Mundt, Ariah and Andreea Minca (May 2021). While Stability Lasts: A stochastic

Model of Stablecoins. Working Paper 2004.01304v2. arXiv.

Kreuzer, Alexander and Claudia Czado (Nov. 2019). Bayesian inference for dynamic vine

copulas in higher dimensions. Working Paper 1911.00702. arXiv.

Liu, Yukun and Aleh Tsyvinski (2018). Risks and Returns of Cryptocurrency. Working Paper

24877. NBER.

Luckner, Clemens Graf von, Carmen M. Reinhart, and Kenneth S. Rogoff (2021). Decrypting

New Age International Capital Flows. Working Paper 29337. NBER.

Makarov, Igor and Antoinette Schoar (2020). “Trading and arbitrage in cryptocurrency mar-

kets.” In: Journal of Financial Economics 135, pp. 293–319.

Markowitz, Harry (1952). “Portfolio Selection.” In: Journal of Finance 7(1), pp. 77–91.

Mulder, Nicholas (2022). The Economic Weapon: The Rise of Sanctions as a Tool of Modern

War. Yale University Press. isbn: 0300259360.

50



Nguyen, Quynh Nga et al. (2020). “Hedging and safe-haven characteristics of Gold against

currencies: An investigation based on multivariate dynamic copula theory.” In: Resources

Policy 68, p. 101766.

Pakel, Cavit et al. (2021). “Fitting vast dimensional time-varying covariance models.” In:

Journal of Business & Economic Statistics 39 (3), pp. 652–668.

Papaioannou, Elias, Richard Portes, and Gregorios Siourounis (2006). “Optimal Currency

Shares In International Reserves: The Impact of the Euro and The Prospects for the

Dollar.” In: Journal of the Japanese and International Economies 20(4), pp. 508–547.

Patton, Andrew (2012). “A review of copula models for economic time series.” In: Journal

of Multivariate Analysis 110, pp. 4–18.

Shanaev, Savva et al. (2020). “Cryptocurrency Value and 51% Attacks: Evidence from Event

Studies.” In: Journal of Alternative Investments 22 (3), pp. 65–77.

Shaw, William (2006). “Sampling Student’s T distribution – use of the inverse cumulative

distribution function.” In: Journal of Computational Finance 9 (4), pp. 37–73.

Shiferaw, Yegnanew A. (2019). “Time-varying correlation between agricultural commodity

and energy price dynamics with Bayesian multivariate DCC-GARCH models.” In: Phys-

ica A: Statistical Mechanics and its Applications 526, p. 120807.
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A Stablecoins

”Stablecoins” are a different type of cryptocurrency that attempt to maintain a fixed

exchange rate against an external quantity, often the US dollar. Stablecoins attempt to do

so primarily in two different ways. First, some stablecoin issuers hold US dollar collateral,

such as Treasury bills or commercial paper. Second, some stablecoin issuers accept other

cryptocurrencies as collateral (including other stablecoins), usually over-collateralizing their

US dollar obligations to account for the high price volatility of cryptocurrency. Executing a

stablecoin trade over the Ethereum network requires paying a small quantity of Ether as a

transaction (”gas”) fee. Because stablecoin issuers need to hold and transact in collateral,

stablecoins are inherently more centralized than Bitcoin and Ether. In fact, the two largest

stablecoin issuers, Circle (which issues US Dollar Coin) and Tether (which issues Tether)

retain the ability to block cryptocurrency wallets containing their stablecoins, freezing the

stablecoins. As of July 28, 2022, Circle has blocked 48 Ethereum wallets27 and Tether

has blocked 692 Ethereum wallets.28 No stablecoin currently exists which is resistant to

sanctions, backed by sufficient collateral to preclude the risk of losing its peg, and sufficiently

liquid to accommodate a central bank’s transactions (billions of US dollars).

A stablecoin that is sufficiently decentralized that its issuer could not block transactions

probably would need to rely heavily on algorithms for its implementation (introducing various

security risks) and exclusively accept other cryptocurrencies as collateral. However, the track

record of so-called ”algorithmic” stablecoins that are backed by other cryptocurrencies is

mixed. In May 2022, the $19 billion stablecoin TerraUSD collapsed when the value of its

collateral, another cryptocurrency called Luna, cratered. Many other algorithmic stablecoins,

including Basis Cash, Iron Finance, SafeCoin, BitUSD, DigitalDollar, NuBits, and CK USD

have also failed.29 Klages-Mundt and Minca (2021) provide a stochastic model that captures

27https://dune.com/phabc/usdc-banned-addresses
28https://dune.com/phabc/usdt—banned-addresses
29https://indianexpress.com/article/technology/crypto/luna-terra-crash-a-brief-history-of-failed-
algorithmic-stablecoins-7934293/
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the deflationary deleveraging that the algorithmic stablecoin Dai experienced in March 2020.

Speculators who exchanged other cryptocurrencies for Dai were forced to repurchase Dai as

their collateral dropped in value, in some cases facing forced liquidation of their collateral

at a price of zero due to Ethereum network congestion and illiquidity. As a result, Dai

became undercapitalized, while its price rose as high as $1.13. To address this crisis, the

Dai governance community (holders of the MKR token) issued additional equity-like MKR

tokens to recapitalize Dai, and voted to begin accepting US dollar-backed stablecoins as

collateral in order to stabilize the price of Dai. Since March 2020, Dai has successfully

maintained its $1.00 soft peg. Dai is currently the largest stablecoin whose governance

process is sufficiently decentralized that Dai tokens cannot be blocked or frozen. However, if

Dai became widely used as a means of evading sanctions, it would be vulnerable to having

its stablecoin collateral frozen, potentially precipitating a collapse in the value of Dai.

Any investor that holds an algorithmic stablecoin backed exclusively by decentralized

collateral necessarily assumes intermediation risk. It may be impossible to develop an al-

gorithmic stablecoin that is both resistant to sanctions and capable of maintaining a $1.00

soft peg without directly or indirectly holding fiat collateral. Stablecoins will likely remain

an active domain for financial innovation, but they do not currently appear to be suitable

as reserve assets.
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B Market Characteristics of Bitcoin

B.1 Liquidity

In order to be suitable for institutional investment, such as by central banks, it must be

possible to transact in billions of dollars of Bitcoin without incurring extravagant costs. The

Bitcoin network structure favors large block trades because transaction fees paid to miners

are fixed, not a percentage of the transaction, and those fees are typically just a few dollars

(converted from units of Bitcoin), as illustrated in Figure 22. The average daily trading

volume of Bitcoin is also on par with other major reserve assets, as displayed in Figure 23.

Lastly, Figure 24 shows that the bid / ask spreads of Bitcoin average 0.1% or less across

multiple exchanges.

Source: blockchain.com

Figure 22: The average transaction fee for processing an on-chain Bitcoin transaction. The
fee is paid in Bitcoin, but converted to US dollars for this chart.
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Source: World Gold Council, coinmarketcap.com

Figure 23: Average daily trading volume of major reserve assets and cryptocurrencies, in-
cluding stablecoins Tether and US Dollar Coin.
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Source: bitcoinity.org

Figure 24: The bid / ask spread of Bitcoin across several cryptocurrency exchanges.
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B.2 Flight to Safety

As a risky asset, Bitcoin has historically not exhibited a flight to safety effect; Bitcoin’s

price tends to fall during periods of economic turmoil. Indeed, Figure 25 shows that Bitcoin

declined concurrent with Russia’s invasion of Ukraine in February 2022. However, the figure

also shows that Bitcoin sharply appreciated immediately following the US Treasury’s sanc-

tions against the Central Bank of Russia. Therefore, the decentralized nature of Bitcoin may

provide some insurance value against deglobalization shocks, such as the disruption caused

by sanctions. This hypothesis is consistent with Aysan et al. (2019), who find that Bitcoin

hedges geopolitical risks.

B.3 Store of Value

Estimating the fundamental value of Bitcoin is an active area of research. One strand

of literature argues that the fundamental value of Bitcoin is zero. For example, Cheah and

Fry (2015) apply statistical tests to Bitcoin’s early history and argue that Bitcoin prices

constitute a speculative bubble. To the contrary, Biais et al. (2022) argue that Bitcoin

should be valued based on its stream of net transactional benefits, including the evasion of

government capital controls. Hayes (2019) finds that the price of Bitcoin loosely corresponds

to Bitcoin’s marginal cost of production.

Indeed, there are several reasons to believe Bitcoin’s fundamental value is positive (even if

difficult to determine). First, Bitcoin is a resource for which there are no obvious substitutes.

Bitcoin is the largest proof-of-work currency by nearly two orders of magnitude. Network

effects in the world of cryptocurrency appear to be very strong; efforts to improve Bitcoin by

altering aspects of the Bitcoin architecture (such as the 2017 hard fork that spawned ”Bitcoin

Cash,” a version of Bitcoin that can process more on-chain transactions per second) have not

seriously rivaled Bitcoin’s popularity. Rather than altering the Bitcoin architecture itself,

efforts to improve Bitcoin’s functionality currently focus on designing methods to transact

off-chain, such as the Lightning network, which offers faster transactions and reduced fees.

58



Feb 18 Feb 21 Feb 24 Feb 27 Mar 02
date

0.8

0.9

1.0

1.1

1.2
gr

os
s r

et
ur

n 
($

)
Gross Returns, Relative To 2022 Ukraine Invasion

bitcoin
gold
2-year
treasuries

Source: investing.com

Figure 25: The price returns of reserve assets and Bitcoin, normalized to $1 on February 24,
2022, the day Russia invaded Ukraine. The dashed line indicates 5:00 AM EST on February
28, 2022, when the US Treasury Office of Foreign Assets Control sanctioned the Central
Bank of Russia.

Implicitly, these innovative efforts acknowledge the robustness of Bitcoin to usurpation by

clones or other rivals.

Second, the total quantity of Bitcoin is capped at approximately 21 million (the total

quantity of Ether is not capped, but the proof-of-stake update is expected to result in defla-

tion).30 After the last Bitcoin is mined in 2140, miners will compete to receive transaction

fees for their services, but will not receive any newly minted Bitcoin. Although scarcity

does not necessarily imply value, the quantity limit does effectively prevent Bitcoin from

30https://blockchain.news/analysis/ethereum-2.0-full-upgrade-will-prompt-a-1-percent-annual-deflation-
rate
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experiencing devaluation through hyperinflation.

Third, Bitcoin’s volatility does not preclude its functioning as a store of value. Gold,

a reserve asset widely regarded as a store of value, has experienced significant real losses

over prolonged periods of time. Harmson (1998) illustrates that gold tends to maintain its

purchasing power over centuries, but the price of gold can experience significant fluctuation

over 10- or 20-year periods. Indeed, Figure 26 illustrates that the real price of gold expe-

rienced an 86% decline over approximately a 21-year period beginning in 1980. Similarly,

since Bitcoin’s third ”halving” event in July 2016 (which reduced the rate at which Bitcoin

is mined), Bitcoin experienced a maximum real drawdown of 83% from December 2017 to

December 2018.31 Superimposing the Bitcoin and gold price graphs reveals several similari-

ties, including the concavity, the pattern of volatility clustering towards the beginning of the

series, and the magnitude of the price decline.

31Earlier in its history, Bitcoin experienced a 94% nominal drawdown in 2011, declining from $32 to $2. But
Bitcoin was a riskier asset in 2011, since it was just two years old and much less widely adopted, making
Bitcoin’s future prospects in 2011 substantially more uncertain.
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Figure 26: The real return of Bitcoin and gold, measured from peak to trough of gold’s
largest drawdown in the last 50 years, and Bitcoin’s largest drawdown since July 2016 (the
date of Bitcoin’s third ”halving” event, which reduces the mining rate of Bitcoin).
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C Inverse Student-T Distribution Approximation

The first four terms of the Cornish-Fisher approximation are given in Abramowitz and

Stegun (1972). These terms expand the inverse Student-t distribution around the inverse

Normal distribution, exploiting the fact that the t-distribution and Normal distribution are

”close.” The approximation error falls as the degrees of freedom rise, but the error rises in

the tails of the Student-t distribution.

T−1
λ (x) ≈ z

+
z(z2 + 1)

4λ

+
z(5z4 + 16z2 + 3)

96λ2

+
z(3z6 + 19z4 + 17z2 − 15)

384λ3

+
z(79z8 + 776z6 + 1482z4 − 1920z2 − 945)

92160λ4

In order to improve this approximation, I also implement a power series expansion for

the tails of the Student-t distribution, where the Cornish-Fisher expansion performs poorly.

The tail series performs better when the degrees of freedom are small, making a good pairing

with the Cornish-Fisher expansion. Shaw (2006) gives the series expansion, where w is an

auxiliary variable and yn(w, λ) is a series of polynomial terms, with n being the order of the

expansion. I carry the expansion to six terms.

w(x, λ) = (1− x)
√
λπ

Γ(λ/2)

Γ((λ+ 1)/2))

T−1
λ (x) ≈

√
λ(w

√
λ)−1.0/λ ∗ (1 + y1(w, λ) + y2(w, λ) + . . .+ yn(w, λ))

I fit a logistic function, q = 1
1+exp(kλ)

to estimate the crossover quantiles, as a function of

the degrees of freedom, where the error in the Cornish-Fisher expansion equals that of the

tail series. I find that k = −1.09080618.
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Figure 27: The percent error in the combined inverse Student-t distribution approximation,
switching between the Cornish-Fisher and tail series based on the fitted logistic function.
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