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Abstract

Central banks may shift their international reserve holdings in order to protect
themselves ex-ante against the risk of financial sanctions by fiat reserve currency issuers.
For example, from 2016 to 2021, countries facing a higher risk of US sanctions increased
the gold share of their reserves more than countries facing a lower risk of US sanctions.
This paper explores the potential for Bitcoin to serve as an alternative hedging asset. 1
describe a dynamic Bayesian copula model to simulate the joint returns of Bitcoin and
other reserve assets under a wide range of plausible sanctions probabilities. Assuming
mean-variance preferences, a modest risk of sanctions significantly increases optimal
gold and Bitcoin allocations. If a central bank cannot acquire sufficient physical gold
to hedge its sanctions risk, the optimal Bitcoin share rises further, suggesting that gold
and Bitcoin are imperfect substitutes. I conclude that sanctions risk may diminish the
appeal of US Treasuries, propel broader diversification in central bank reserves, and

bolster the long-run fundamental value of both cryptocurrency and gold.
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1 Introduction

As cryptocurrencies have become increasingly mainstream vehicles for investing and
transferring wealth, governments have begun to explore potential applications of the tech-
nology. Most prominently, El Salvador began adding Bitcoin to its reserves in September
2021, accumulating over 2,381 Bitcoin worth $57 million as of July 2022. In April 2022,
the Central African Republic adopted Bitcoin as legal tender alongside the CFA franc. And
in February 2022, Ukraine began accepting cryptocurrency donations to fund its military
and purchase humanitarian aid during Ukraine’s war with Russia, ultimately receiving $100
million from supporters across the globe.

The global financial sanctions enforced against Russia following its February 2022 inva-
sion of Ukraine are unprecedented in their scope. Never before has an economy the size
of Russia’s — the 11th largest in the world — been subjected to such a comprehensive, co-
ordinated sanctions effort. Russia’s central bank found its assets frozen by the US, EU,
UK, Switzerland, Japan, Canada, Australia, and South Korea. Ultimately, these major and
minor reserve currency issuers froze approximately $300 billion of Russia’s assets, roughly
half of Russia’s international reserves.

The ability of fiat reserve issuers to freeze transactions, which constitutes a form of
de facto default on the underlying obligations, calls into question fiat reserve currencies’
status as "safe haven” assets. Therefore, it is timely to explore the question of how, and
to what extent, the risk of financial sanctions may motivate changes in central bank reserve
composition.

I adopt a unique econometric approach to modeling cryptocurrency. Rather than as-
suming that the high realized returns of Bitcoin as of 2022 are likely to persist, I estimate
a Bayesian model with an informative prior, whose parameters I choose to reduce the ex-
pected compound returns of Bitcoin. I use simulations from the model to compute optimal
portfolios as a function of risk aversion. To my knowledge, this is the first paper to quantify

the potential effect of sanctions risk on international reserve allocations. Unlike most of the



sanctions literature, which estimates the effects of sanctions ex-post, this paper focuses on
understanding the ex-ante effect of sanctions risk.

The paper is structured as follows. Section [2| describes financial sanctions and related
literature. Section || discusses evidence that fear of sanctions may motivate central bank
gold holdings. Section [4] outlines features of cryptocurrency and its resistance to sanctions.
Section [5] details the time series model to simulate the returns of Bitcoin and reserve assets,
and Section [6] benchmarks the performance of the model. Section [7] uses the simulations
to demonstrate the effect of sanctions on reserve allocations under a range of plausible
assumptions. Finally, Section [§| concludes, with implications for the renminbi and central

bank digital currencies.

2 Overview of Financial Sanctions

The history of economic sanctions dates back to the blockades of World War I, following
which the League of Nations began employing sanctions in support of foreign policy objec-
tives as an alternative to war. Mulder (2022) describes the usage of economic sanctions as
a coercive tool in the interwar period. Economic sanctions encompass both trade sanctions
(tariffs and embargoes) as well as financial sanctions. In the digital commerce era, financial
sanctions have assumed greater prominence because of the degree of centralization of the
global financial system and the immediacy with which electronic banking services can be
disabled. Zarate (2013) details the expansion of the US Treasury Department’s financial
sanctions programs to assist counterterrorism efforts following the 9/11 attacks. Hufbauer
and Jung (2020) updates Hufbauer, Schott, et al. (2009) and describes more recent develop-
ments in economic sanctions, including the Iran nuclear agreement and Trump tariffs.

In the United States, financial sanctions can be implemented through a legislative or
presidential procedure. In the legislative procedure, Congress passes a law specifying sanc-

tions, and either the President signs the law or Congress overrides the President’s veto. In



the presidential procedure, the President issues an executive order declaring a state of emer-
gency concerning a particular country, region, or topic, which empowers the US Treasury’s
Office of Foreign Assets Control (OFAC) to issue sanctions. All US persons must comply
with OFAC sanctions, including all persons and entities within the United States, all US
incorporated entities and their foreign branches. If a US person identifies property belonging
to an OFAC-sanctioned entity, the US person must "block” (freeze) the property — prohibit-
ing transfers or dealings of any kind with regard to the property — unless OFAC grants an
exception or lifts the specific sanction.ﬂ Penalties for failing to comply with OFAC sanctions
can be significant. Fines can reach millions of dollars, and individuals can face jail time.
In April 2022, a researcher received a 63-month sentence, along with a $100,000 fine, for
delivering a presentation about cryptocurrency technology in North Korea.ﬂ Foreign entities
beyond the reach of US law enforcement may face ”secondary sanctions” for conducting
business with sanctioned entities.

Other governing bodies implement various procedures for issuing sanctions. The Furo-
pean Union Common Foreign and Security Policy Council may impose sanctions if all EU
members consent to the proposal. The United Nations Security Council may approve sanc-
tions if nine out of the fifteen members vote in favor, but any permanent member (China,
Russia, France, the United Kingdom, and the United States) may veto the proposal. Perhaps
because of the relative ease of implementing sanctions through unilateral executive action,
the US has sanctioned far more entities than the UN or EU. As of September 2019, the
OFAC list included 8,755 entities, compared with 2,136 for the EU and 1,057 for the UN.E|
Partly due to concerns about the overuse of sanctions and unintended effects on vulnerable

groups, the Biden administration announced in October 2021 that it intended to limit its

LOFAC operates several types of sanctions programs. This paper studies the effect of full blocking sanctions
under OFAC’s Specially Designated Nationals And Blocked Persons List (”SDN List”).

2https: //www.wsj.com/articles/cryptocurrency-guru-sentenced-to-more-than-five-years-in-prison-over-
north-korea-trip-11649789150

3https://www.tradefinanceglobal.com/wire/accuity-data-reveals-increased-complexity-of-sanctions-
compliance-and-implications-for-global-trade/



usage of sanctions /]

Empirical evidence concerning the effectiveness of sanctions programs is mixed. Felber-
mayr et al. (2020) compile a global database and find that sanctions are increasingly used
over time; the share of financial sanctions is rising; the main objectives of sanctions are
increasingly related to democracy or human rights; and the success rate of sanctions has
fallen since 1995, averaging 30% across policy objectives. In a firm-level comparison of sanc-
tioned to unsanctioned Russian firms, Ahn and Ludema (2020) show that the 2014 sanctions
caused significant losses in operating revenue, asset values, and employees, but the Russian
government shielded some strategic firms from the full effect of the Western sanctions.

Several central banks currently face or have faced US sanctions. As of July 2022, the
central banks of Russia, Iran, Syria, North Korea, and Venezuela are under US sanctions.
Additionally, after the 2021 Taliban takeover, the Biden administration froze the New York
Fed account belonging to the central bank of Afghanistan, ultimately expropriating the funds
to divide them equally between a trust for the people of Afghanistan and victims of the 9/11
attacksﬂ Previously, the US froze the reserves of Iraq following its 1990 invasion of Kuwait
(which President Bush subsequently expropriated in 200@ and temporarily suspended Iraq’s
cash withdrawals in 2015 over concerns that cash was being transported to terrorist groups
and sanctioned Iranian banks.m In QOOéﬁ and 2020E| the US threatened to freeze Iraq’s
reserves if Iraq expelled US troops from the country.

The countries described above face sanctions for a variety of reasons including launch-
ing external wars, sponsoring terrorism, developing nuclear weapons, repressing protests,

refusing to accept the outcome of elections, and seizing power from a previous government.

4https://www.wsj.com /articles/biden-administration-to-trim-use-of-sanctions-in-a-foreign-policy-shift-
11634600029

https://www.nytimes.com/2022/02/11/us/politics/taliban-afghanistan-911-families-frozen-funds.html

Chttps://www.washingtonpost.com/archive/politics /2003 /03 /21 /us-seizes-14-billion-in-frozen-iraqji-
assets/98cbb395-ec84-422e-b825-7a864eea340d/

Thttps://www.wsj.com/articles /u-s-cut-cash-to-iraq-on-iran-isis-fears-1446526799

8https://www.independent.co.uk /news/world /middle-east /us-issues-threat-to-iraq-s-50bn-foreign-reserves-
in-military-deal-841407.html

9https://www.wsj.com/articles /u-s-warns-iraq-it-risks-losing-access-to-key-bank-account-if-troops-told-to-
leave-11578759629



Therefore, a central bank cannot preclude the possibility of facing US sanctions if the coun-
try in question simply avoids particular types of activity. Moreover, there is no expiration

date to US financial sanctions. Some sanctions against Iran have been in place since 1979.

3 Sanctions and Central Bank Gold Allocations

Empirical evidence regarding the ex-ante effect of sanctions risk on central bank gold
holdings is helpful to motivate the subsequent discussion of cryptocurrency as a potential
reserve asset.

The primary non-fiat reserve asset is gold. Gold reserves under the physical control of
a central bank are largely beyond the reach of financial sanctions by third parties. For
example, despite facing US financial sanctions, the Central Bank of Venezuela chartered
Russian aircraft to sell its gold reserves in Africal"’| Therefore, a desire to hedge against
financial sanctions risk by fiat reserve currency issuers is potentially one reason why central
banks may accumulate gold reserves.

Since the Great Recession, central banks have steadily added gold to their reserves, as
illustrated in Figure [Il In 2020, the gold share of international reserves reached a 20-year
high of 14.4%.

The distribution of gold shares across central banks is heterogeneous. Figure [2] displays
the distribution conditional on a non-zero gold share. About 20% of central banks do not
own any gold; a few maintain gold shares in excess of 50%. The heterogeneity in gold
allocations across central banks suggests that political and logistical considerations — such
as the cost of transporting and securing physical gold — are as important as a central bank’s
risk tolerance in determining its portfolio composition. Indeed, Aizenman and Inoue (2012)
find that central bank gold holdings are correlated with ”global power” such as the history
of being an empire, the geographic size of the country, and the country’s centrality to the

international financial system.

DOhttps:/ /www.wsj.com /articles/how-T7-4-tons-of-venezuelas-gold-landed-in-africaand-vanished-11560867792



percent

World Gold Reserves

16 37000
14 36000
.
1o 35000
/\p,ﬁvj/ 34000
10 = 33000 o
8 32000 S
6 31000 -8
30000 ©
4 20000 £
2 28000
%wvb%owvb%027ooo
S O © L XA AN N @
S S TS

— percent (left) — metric tons (right)

Source: World Gold Council

Figure 1: The quantity of gold in international reserves.
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Figure 2: The distribution of gold shares across central banks that own gold.



It is also informative to study the changes in gold shares across central banks, and relate
those changes to a variable that could proxy for financial sanctions risk. Military import
deals evince political alignment and require a real commitment of financial and political
capital.[l;r] I obtain annual data from 2017 to 2021 on military imports and exports from
the Stockholm International Peace Research Institute (SIPRI). The financial terms of arms
trade agreements are often undisclosed, so SIPRI computes a Trend Indicator Value (TIV)
based on unit production costs and weapon characteristics that represents the military value
of the items being traded.

Countries that import valuable military equipment from geopolitical rivals of the United
States, particularly China and Russia, plausibly face a heightened risk of U.S. sanctions. In
2017, then-President Trump signed the Countering America’s Adversaries Through Sanctions
Act, providing for sanctions on entities that transact with the Russian defense sector. In
2020, President Trump issued Executive Order 13959, establishing financial sanctions against
certain Chinese military companies. As previously discussed, entities that transact with
sanctioned entities face the risk of secondary sanctions, so importing military goods from
China or Russia raises the importer’s sanctions risk.

I obtain a sample of central bank gold shares from the World Gold Council. T filter the
sample by discarding countries that do not own any gold, or whose TIV military imports from
the US, China, and Russia were zero from 2017 to 2021 inclusive, resulting in 81 countries.
For each country, I define a measure of political alignment, mil_import_diff, in Equation (/1))
The result is a metric ranging from -100 to 100 that indicates the extent of a country’s
military-political alignment with the US (100) or rivals of the US (-100). Averaging over
a 5-year period in Equation helps account for the fact that some military trade deals

require multiple years to plan and execute.

T eschew using United Nations voting records, which are commonly used to measure political alignment
among countries, because they are not obviously connected to sanctions risk and often constitute cheap
talk.



Change in Gold Share of Reserves vs Origin of Military Imports
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Figure 3: The origin of military imports explains changes in central bank gold shares from
Q4 2016 to Q4 2021.
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mil_import diff; , =

(1)

T=Q4 2021
mil_import_diff; = Z mil_import_diff; , /5 (2)
t=Q4 2016

Then, I run the following regression. I choose the log ratio of the gold share as the
outcome variable, rather than the percentage point difference, because of the heterogeneity

in the level of gold shares illustrated in Figure [2|



gold_share; o, 9921

= il i t_diff, trols;
gold share, ¢, 2016) Bo + B1(mil_import_diff;) + v(controls;) (3)

Without including any controls, Figure [3|displays a scatterplot illustrating the regression
line and its confidence interval.

More detailed regression results are available in Table I compute standard errors
using the heteroskedasticity robust Eicker-Huber-White estimator. Control variables include
groupings based on geographic location and GDP per capita. Regardless of the choice of
controls, the origin of a country’s military imports retains statistically significant explanatory
power over changes in its central bank gold shares from Q4 2016 to Q4 2021.

Table 1: Gold Share Regression Results

Economic No Yes No Yes
Controls
Geographic No No Yes Yes
Controls
R? 0.07 0.13 0.22 0.26
mil_import_diff
Coeflicient -0.0016 -0.0019 -0.0021 -0.0024
(p-value) (0.009)** (0.008)** (0.004)** (0.006)**

Of course, these regressions do not establish a causal link between sanctions risk and gold
allocations. But this analysis of central bank gold shares does demonstrate robust demand
for a non-fiat reserve asset, especially among countries that may be less trusting of the major
fiat reserve issuers. Cryptocurrencies may be of particular interest for countries with political

or economic disagreements with fiat reserve issuers.

4 Characteristics of Cryptocurrency

Cryptocurrencies are fungible digital tokens, the history of which is stored on a digital

ledger secured by cryptography. The largest and oldest cryptocurrency, Bitcoin, began use
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in 2009; since then, people have created thousands of different cryptocurrencies employ-
ing different digital architectures. As of July 2022, Bitcoin and Ether (the second largest
cryptocurrency) collectively comprise about 60% of the approximately $1.0 trillion market
capitalization of all cryptocurrencies. Since 2018, the prices of Bitcoin and Ether have been
highly correlated, as illustrated in Figure [dl A detailed history and technical description of
cryptocurrency is beyond the scope of this paper, but Hardle, Harvey, and Reule (2020) and

Halaburda et al) (2022)| provide an overview.

Rolling 3-Month Correlation: Bitcoin and Ether
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Figure 4: The 3-month rolling correlation between Bitcoin and Ether.

A central tenet of Bitcoin and Ethereum, the network that supports the cryptocurrency
Ether, is the immutable public decentralized system, called a blockchain, through which to-

kens are created and transactions are authenticated. The blockchain is pseudo-anonymous in
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that transactions between wallets are public knowledgeB while the identities of the wallets’
owners are generally not revealed (but sometimes can be inferred based on transaction pat-
terns and other external information). Bitcoin currently operates a ”proof-of-work” process
for authenticating transactions, in which groups of miners ("mining pools”) operating spe-
cialized computing equipment compete to confirm new blocks of transactions. The odds of
winning the competition are proportional to the computing power expended on the task, and
the winner receives both transaction fees and a quantity of newly minted cryptocurrency.
Ethereum operates a ”proof-of-stake” system in which holders of Ether receive transaction
fees and newly minted Ether proportional to the quantity of Ether that they pledge to
authenticate new transactions.

Although proponents of cryptocurrency cite its ”trustlessness” as an advantage over fiat
currencies, Bratspied (2018) points out that cryptocurrencies require different forms of trust.
Specifically, users must trust that the cryptocurrency software itself is secure, that miners
will not collude to attack the integrity of the blockchain, and that the governance process
will not approve of a "hard fork” that fundamentally alters the blockchain itself or other
parameters of the cryptocurrency.

Decentralized cryptocurrencies are resistant to governmental financial sanctions. A fiat
currency issuer can issue sanctions against particular cryptocurrency wallets, rendering it
illegal for holders of fiat currency to assist the owners of the sanctioned cryptocurrency
wallets with converting their cryptocurrency into fiat currency. Sanctioned individuals may
not be able to use large cryptocurrency exchanges, who are required to comply with sanctions
programs if the exchanges want to continue converting cryptocurrency into fiat currency.
But as long as the issuers of fiat currency do not control the blockchain itself, sanctioned
individuals can continue to send cryptocurrency from one wallet to another. Additionally,
sanctioned individuals could participate in ”off-chain” transactions by providing the private

keys to their cryptocurrency wallet in exchange for goods, services, or other forms of currency,

12Some cryptocurrencies, such as Monero, employ additional measures that obscure transactions.

12



as discussed in Luckner, Reinhart, and Rogoft (2021), For example, in April 2022, North
Korean hackers continued to launder $600 million of Ether stolen during a hack of the video
game Axie Infinity, eight days after the US Treasury sanctioned the digital wallet used in the
hack.H In 2018, Iran began issuing licenses to cryptocurrency miners, who are required to
sell their tokens to the central bank to facilitate sanctions evasionE A discussion regarding
stablecoins, which are inherently more centralized than Bitcoin or Ether and therefore not
suitable for evading sanctions, can be found in Appendix [A]

Under a proof-of-work system, the ability to censor transactions on the blockchain re-
quires achieving "majority hash power,” meaning that the censor must control at least 51%
of the computing power employed by all miners. Achieving such a status is not feasible due
to the sheer quantity of computing power dedicated to Bitcoin mining, as well as the amount
of electricity required to power the mining chips. Furthermore, the structure of the Bitcoin
network incentivizes Bitcoin owners to oppose any individual’s acquisition of majority hash
power by purchasing or producing their own mining chips, because majority hash power also
enables a "double spending attack” that results in the duplication of Bitcoin, which would
likely destroy confidence in the cryptocurrency. In 2014, the Bitcoin mining pool Ghash.io
briefly acquired majority hash powerB and faced a combination of public criticism, cyber-
attacks, and abandonment by miners that quickly reduced its market share below 50%. No
mining pool has ever acquired majority hash power in Bitcoin since then. The impossibility
of implementing a successful attack against Bitcoin contributes to Bitcoin’s status as the
most valuable cryptocurrency. Moreover, the proof-of-work mechanism establishes a barrier
to the large-scale adoption of an alternative to Bitcoin. Rival proof-of-work currencies tend
to face difficulty attracting miners, since prospective miners could mine Bitcoin and other
established currencies more profitably. This creates a feedback cycle wherein small proof-

of-work currencies are not valuable enough to attract many miners, and therefore remain

Bhttps://www.washingtonpost.com/business/2022/04 /23 /north-korea-hack-crypto-access/

Mhttps: //techcrunch.com/2022/06 /19 /iran-to-cut-electricity-to-authorized-crypto-miners-report/

https:/ /www.extremetech.com/extreme/184427-one-bitcoin-group-now-controls-51-of-total-mining-power-
threatening-entire-currencys-safety
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vulnerable to majority hash attacks, a risk which prevents the small proof-of-work currencies
from becoming more valuable. Indeed, many smaller cryptocurrencies that operate based

on the proof-of-work mechanism have faced majority hash attacks, as described in Shanaev

et al) (2020
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Figure 5: The proportion of Bitcoin mining, by country. China officially banned Bitcoin
mining in June 2021, but mining operations continued, often via VPN’s that mask the
miners’ locations. The shares for Germany and Ireland are likely inflated due to VPN
services that route traffic through those countries.

Bitcoin miners generally do not comply with sanctions regarding the wallets whose trans-
actions the miners are validating. One Bitcoin mining pool, Marathon, announced in May

2021 that it would not validate transactions involving wallets that appeared on the OFAC
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sanctions list["| Facing criticism, Marathon reversed itself one month later, noting that its
mining income was far lower than that of its peers. Theoretically, a sanctioned individual
could offer higher transaction fees if necessary to motivate miners to process the individual’s
transactions. The distribution of Bitcoin mining is well diversified and mobile across coun-
tries, as illustrated in Figure [5) complicating efforts by any individual country to censor the
blockchain by regulating Bitcoin mining.

Under Ethereum’s proof-of-stake system, the ability to censor transactions on the blockchain
requires holding a majority of staked cryptocurrency. A sufficient condition to enforce cen-
sorship on the network is the acquisition of a majority of all digital tokens in circulation. Half
of Ether’s market capitalization is approximately $92 billion, as of July 2022. Of course, the
price of Ether would rise if an individual began purchasing large quantities of Ether, so an
enormous expenditure of resources would be required to enforce censorship on the Ethereum
network. In order to defeat the censor, users would need to acquire some of the censor’s
digital tokens, or else implement a "hard fork” by migrating towards a new copy of the
blockchain with a different distribution of tokens across users, effectively abandoning the
original Ethereum as a dead project. Although network effects will likely support the value
of Ether in the short run, staking Ether does not require a meaningful real-world expenditure
of resources, so Ethereum may be more likely to face serious competition from alternative
networks in the long run than Bitcoin.

The amount of electricity consumed by Bitcoin mining results in a significant negative
environmental externality. According to the International Energy Agency and the Cambridge
Centre for Alternative Finance, Bitcoin mining alone consumes approximately 0.5% of world
energy production as of July 2022. A central bank that purchases significant quantities of
Bitcoin will promote additional Bitcoin mining by increasing the price of Bitcoin, resulting in
additional environmental harm. The environmental externalities of Bitcoin can be thought

of as the cost of decentralization. Countries that are worried about the possibility of US or

https: //www.theblock.co/linked /106865 /marathon-ofac-bitcoin-mining-pool-taproot
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EU sanctions will likely find the environmental costs of Bitcoin mining to be an acceptable
tradeoff in return for the benefit of hedging their reserves against sanctions risk.

Appendix [B| discusses Bitcoin’s liquidity and role as a store of value, noting a ”flight
to safety” effect that appeared in February 2022 immediately following the global sanctions
against the Central Bank of Russia. Reaching the opposite conclusion as Smales (2019), I

argue that Bitcoin meets the minimum requirements to be considered a store of value.

5 Reserve Assets Model

In order to solve portfolio optimization problems including Bitcoin and other reserve
assets, I require a means of generating samples from a plausible joint distribution of future
returns of those assets. A major challenge is that the historical returns of Bitcoin are likely
to severely overstate Bitcoin’s forward-looking expected returns. Between July 1, 2012 and
July 1, 2022 the compound annual return of Bitcoin exceeded 100% per year. It is simply
not realistic to expect such high returns to continue indefinitely, because they are not based
upon the economic fundamentals of cryptocurrency as it exists todayl'"| Bitcoin’s high returns
were realized by early adopters, who made a highly risky investment (consisting of computing
equipment and electricity) into a brand new digital payment system whose usefulness and
longevity were both unclear [¥| Today, cryptocurrencies are far more mainstream; there is no
reason to expect Bitcoin’s future returns to beat optimistic forecasts of the stock market by
an entire order of magnitude["]

Any statistical technique based on bootstrapping, maximum likelihood, or moment-

matching will produce draws from a distribution of Bitcoin returns that resemble Bit-

I"The concept that expected returns fall as asset prices rise is well documented in the context of the stock
market. For example, after a stock joins the list of the top 10 largest US stocks, its 10-year expected return
is 1.5% below the market return. See: https://www.dimensional.com/us-en/insights/large-and-in-charge-
giant-firms-atop-market-is-nothing-new

18To emphasize the riskiness of an early-stage investment into Bitcoin, consider the thousands of cryptocur-
rencies that are nearly worthless today.

19 A combination of high realized returns and declining expected returns could be explained by a declining
rare disaster risk associated with Bitcoin, due to Bitcoin’s increasing rate of adoption and increasing
hashrate, both of which reduce the likelihood of a sudden collapse or a successful attack.
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coin’s historical returns, and likely overstate Bitcoin’s future returns. Therefore, I employ a
Bayesian approach, in which I use an informative prior to adjust Bitcoin’s expected returns
to a more reasonable level. I do not claim to have particular knowledge about the expected
returns of any asset, including Bitcoin. I provide a framework for portfolio optimization
in the context of sanctions where the end-user can explore optimal allocations by encoding
his or her own beliefs. Such beliefs may be derived from principles of economics or other
background knowledge available to the investor.

Although DCC-MGARCH models are almost always solved via the maximum likelihood
technique, a small literature takes a Bayesian approach similar to this paper. Fioruci, Ehlers,
and Louzada (2014) develop an R software package to estimate Bayesian DCC-MGARCH
models using a handful of skewed and heavy-tailed error distributions. Shiferaw (2019) uses
a Bayesian DCC-MGARCH model to study the correlation between energy and agricul-
tural commodity prices. Tang and Aruga (2022) use a Bayesian DCC-MGARCH model to

investigate relationships among the fossil fuel, clean energy stock, gold, and Bitcoin markets.

5.1 Time Series Model

This model combines the AGARCH specification of Engle and Ng (1993) with the DCC
framework of Engle (2002), thereby capturing several important features of financial time

series. The model specification is outlined below.

5.1.1 Univariate Equations

In equation , I model the log returns of each asset. I assume the mean return is not
time varying; accordingly, I do not capture low-frequency features of financial data such as
long-horizon mean reversion. Such effects are difficult to discern from noise at the daily

frequency.

Tit = In(pit/Pit—1) = i + €1, ©=1,2,...N. (returns of ith asset) (4)
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In equation , I model the volatility of returns as having a conditional Student-t dis-
tribution, allowing for heavy-tailed returns. When estimating the model, I further constrain
v; > 3 so that the first three moments of the error distribution are finite. While finite mo-
ments are not a prerequisite for Bayesian inference, they tend to produce more reasonable

volatility estimates.

€i4|71,73,. .. r71 ~ Student-t (0, /07, (vi — 2)/vi, ;) (innovations for ith asset)  (5)

In equation @, I employ a standard GARCH(1,1) specification for modeling the time-
varying volatility. The GARCH component produces heavy-tailed returns and volatility clus-
tering. The AGARCH 9; term allows for asymmetric news impact effects: negative shocks
increase volatility moreso than positive shocks. Several different potential specifications cap-
ture this effect (EGARCH, GJR-GARCH, APARCH) but only the AGARCH specification

is differentiable over its entire domain, which is helpful for the Bayesian sampling procedure.
0y = wi + i€ — 6;)? + Bio;,_y (variance of ith asset) (6)

5.1.2 Multivariate Equations

In equations , , and @D, I compute the standardized residuals, the dynamic condi-
tional covariance, and the dynamic conditional correlation respectively. The DCC compo-
nent of the model allows the correlations to vary over time in a mean-reverting fashion, with

clustered periods of high and low correlation.

m = diag(d;) " (r; — ji) (standardized residuals) (7)

Q, =S +an 1t —8)+b(Q,_; — S) (covariance) (8)
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R, = diag(Q,) " Q,diag(Q,) " (dynamic correlation) 9)

Rather than modeling the GARCH error term using a multivariate distribution, I use a
copula to correlate the univariate marginal distributions of each asset. The theory of copulas
was originally developed by Sklan (1959) and Sklar (1973), who proved that any continuous
joint distribution can be modeled by linking its marginal distributions with a unique copula.
Copula models are commonly used for risk management in finance; Patton (2012)| provides a
recent overview. The copula approach provides flexibility to model the marginal distributions
and the manner of their correlation separately. There are many copulas that produce a wide
variety of dependence structures. Two popular copulas are the Gaussian copula, which
does not feature tail dependence, and the Student-t copula, in which the joint probability
of extreme values is higher than the Gaussian copula. Nguyen et al, (2020) find that the
Student-t copula provides the best fit when applying a GJR-GARCH model to a set of
reserve currencies and gold. Accordingly, I use the Student-t copula, whose density is given
in Equation ([10J).

L troa (T (F (), Ty (F(€24)), -, T3 (Fleny)

€t ~~ N

[T 3 (T3 (F (i)

(Student-t copula density)  (10)

Specifically, tg, \ refers to the multivariate Student-t density with correlation matrixm R;
and degrees of freedom A, t) refers to the univariate Student-t density, 75 ! refers to the in-
verse Student-t distribution function, and F'(-) refers to the marginal cumulative distribution
for each asset (given in Equation ((5))).

When estimating this model, I include five assets: Bitcoin, gold, 2-year US Treasury
bonds, 2-year Euro bonds (measured in USD), and a global market capitalization-weighted
stock index. I do not separately model Ether because of the high correlation between Bitcoin

and Ether. However, the subsequent discussion regarding Bitcoin could be extrapolated to

20Formally, the correlation matrix is given by ﬁRh but as described in Demarta and McNeil (2005), the
Student-t copula is invariant to a strictly increasing transformation of its components. So the Student-t
dispersion matrix may be interpreted as a correlation matrix, provided that A\ > 2.
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a market capitalization-weighted portfolio of both Bitcoin, Ether, and other smaller non-
stablecoin cryptocurrencies.

In adopting a dynamic Bayesian copula approach, this paper is most closely related to So
and Yeung (2014), who also adopt a dynamic conditional correlation approach for a variety
of copula functions, using a more granular vine copula structure that estimates the param-
eters of a separate copula function for each pair of assets. However, So and Yeung (2014)
estimate their models using maximum likelihood, not a Bayesian approach. In this setting,
vine copulas would introduce significantly more computational complexity without much
additional benefit compared to a multivariate copula, because the estimated correlations
across asset classes are moderate-to-low and the estimated tail-dependence coefﬁcientﬂ are
all well below 0.1. Bayesian approaches that utilize vine copulas are more appropriate when
modeling a collection of similar assets, and often involve approximations to the posterior
distribution, as in Kreuzer and Czado (2019).

Because this model features a small number of assets, I avoid the curse of dimensionality,
described by Pakel et al; (2021), that would hinder a Bayesian approach to modeling a large
set of assets. Specifically, the number of parameters in this model grows proportional to
the square of the number of assets. Although central banks have been diversifying their
reserves away from US dollars and euro in the last two decades, as documented in Arslanalp,
Eichengreen, and Simpson-Bell (2022), high-quality US dollar bonds, euro bonds, public eq-
uities, and gold still comprise over 80% of global reserves. Moreover, one could approximate
the performance of many other assets, such as corporate bonds, by forming linear combina-
tions of Treasuries and stock. Therefore, this model captures the set of investment options

available to central banks.

21 A measure of the probability that the return of one asset exceeds a particular quantile, conditional on
another asset exceeding the same quantile, as the quantile approaches 1 or 0. Tail dependence coefficients
vary between 0 and 1; for a Gaussian copula, tail dependence is equal to 0.
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5.2 Priors

I use uninformative priors for the volatility and correlation processes, operating upon the
assumption that historical volatility relationships among these assets are representative of
the future.

However, I set informative priors for the mean returns of the assets. I considered several
factors in selecting the Bitcoin prior. As described in Section [ Bitcoin is a real asset in
finite supply, so its long-run return should be related to the rate of inflation. But unlike
gold, the effective supply of Bitcoin can only shrink in the long run, since Bitcoin can be
rendered permanently inaccessible when owners lose, forget, or discard their private keys.
The blockchain analysis firm Chainalysis found that about 20% of Bitcoin had not been
touched in over 5 years, as of June 2020.@ In the long run, perhaps 1% of Bitcoin will be
"lost” each year, boosting Bitcoin’s expected return to 1% above inflation. From another
perspective, Makarov and Schoar (2020) show that daily Bitcoin exchange volume explains
up to 85% of variation in the Bitcoin price, suggesting that the long-run return of Bitcoin
may be tied to the gross rate of wealth creation. Over the long run, wealth tends to remain a
constant share of GDP, although wealth grew slightly faster than GDP in the 21st century as
of 2020, according to Woetzel et al| (2021). If long-run real GDP growth averages 2%, then
the long-run return of Bitcoin could be similar. Averaging these two approaches, I set the
mean return prior for Bitcoin at 1.5% above that of gold (i.e., 1.5% above 2-year expected
inflation) |

I set the expected returns of Treasuries and FEuro bonds equal to their current yield
as of September 16, 2022 (assuming uncovered interest parity holds in expectation for the
Euro bonds), and I set the expected return of gold equal to the 2-year expected inflation

rate. Based on Asness (2021), who finds that the expected return of both US and developed

Z2https://blog.chainalysis.com /reports/bitcoin-market-data-exchanges-trading/

23Getting the expected return of Bitcoin above that of gold suggests that Bitcoin commands a risk premium
over gold, which seems reasonable since Bitcoin is far more volatile than gold, and Bitcoin’s volatility is
not clearly diversifiable. Indeed, Liu and Tsyvinski (2018)| find that the performance of cryptocurrency is
not explained by common macroeconomic risk factors.
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international equities is about 5% above cash after adjusting for valuation changes, I set the
expected return of world stock equal to 5% above that of Treasuries. Table [2] contains a list

of priors, and an explanation of each.
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Table 2: Priors on Model Parameters

Parameter Prior Notes
Normal(m, o), where
i m = (4.68, 3.18, 3.85, 3.85, 8.85)" /253 See above. Annual returns are
o = (1.0,0.5,0.02,0.02,0.50)" /253 divided by 253 trading days in
the year.
< constminecij 3}1;;7}}1113’11( qchg.ilr)lterval 0,1] Gelman| (2006) suggests the
’ half-Cauchy distribution as a
prior for variance parameters.
a Uniform(0, 1) Constraints that the variance
process is mean-reverting.
3 Uniform(0, 1-@) Constraints ensure that the
variance process is
mean-reverting.
5 : Cauphy((), 0'1.)’ Ensures that negative shocks
constrained within the interval [0,1] .
have a stronger impact on the
variance at time ¢ than positive
shocks.
S Lewandowski-Kurowicka-Joe(1) Uniform prior over the set of
correlation matrices.
a Uniform(0,1) Constraints ensure that the
correlation process is
mean-reverting.
b Uniform(0,1-a) Constraints ensure that the
correlation process is
mean-reverting.
v vV — 3 ~ Gamma(2,0.1) Juarez and Steel (2010) suggest
this Gamma prior for Student-t
degrees of freedom. 7/ > 3
ensures that the first three
moments of the marginal
distributions are finite.
A A — 2 ~ Gamma(2,0.1) Juarez and Steel (2010) suggest

this Gamma prior for Student-t
degrees of freedom. A > 2

ensures that the covariance of

the multivariate copula is finite.
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5.3 Data

I obtain daily historical Bitcoin and gold prices at the close of each business day from
investing.com, 2-year US Treasury yields from the St. Louis Federal Reserve, and 2-year
Euro bond yields from the European Central Bank. For world stock, I obtain the daily
returns of the Vanguard Total World Stock Index ETF, adjusted for dividends, which tracks
the FTSE Global All Cap Index.

Bitcoin’s early history—when it was regarded moreso as a science experiment rather than
a legitimate asset class—is likely to be less informative of Bitcoin’s future returns compared
to Bitcoin’s modern history. Additionally, the correlation between Bitcoin and the stock
market sharply rose starting in March 2020, as illustrated in Figure [0l Because I want to
capture this higher correlation, I begin my sample on March 1, 2020, continuing until July

22, 2022.
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Rolling 3-Month Correlation: Bitcoin & World Stock
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Figure 6: The estimated rolling correlation between Bitcoin and the FTSE Global All Cap
Stock Index.

5.4 Computation

I sample from the posterior distribution over the parameter set { i, d, &, 3, 5,8, d, b, 7, A}
using the Bayesian modeling software Stan developed by Carpenter et al| (2017). Stan
implements a No-U-Turn sampler, a variant of Hamiltonian Monte Carlo. When running
the sampler, I use 6 chains, with 1084 samples per chain, including 250 warmup iterations
per chain that I discard. Figure [7] presents heatmaps of the mean return parameters for
Bitcoin and gold.

In order to speed up the computation of this model, I implement an approximation to
the inverse Student-t distribution, which must be computed many times as part of the mul-

tivariate Student-t copula in Equation . Computing the inverse Student-t distribution
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using root-finding procedures, such as using the inverse regularized beta function, is about
2x - 3x slower. The approximation, which combines two power series, achieves a maximum
error of 0.15% for all degrees of freedom and all quantiles between 0.00001 and 0.99999. A

description of the approximation can be found in Appendix [C]
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Figure 7: A heatmap of the posterior mean return parameters for Bitcoin and gold.

The unconditional standard deviation of asset ¢ is given by:

2
wi + a;7;

(unconditional standard deviation) (11)

For each draw from the model posterior, I compute the unconditional standard deviation,
and compare the resulting distribution against the sample standard deviation. Figure

displays the result for Bitcoin and gold. The posterior unconditional standard deviation is
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heavy-tailed, especially for Bitcoin.

Unconditional Long-Run Standard Deviation
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Figure 8: A heatmap of the posterior long-run standard deviation for Bitcoin and gold,
compared with the sample standard deviation (red lines).

The relationship between Bitcoin’s degrees of freedom parameter — which controls the
extent of heavy-tailed behavior of its marginal distribution — and the long-run volatility
of Bitcoin is displayed in Figure [0 The crescent-like shape of the posterior distribution
indicates a relationship between samples in which Bitcoin is especially high risk (low degrees
of freedom, high standard deviation), and samples in which Bitcoin is lower risk (high degrees
of freedom, low standard deviation).

Lastly, it is informative to examine the distribution of S, the long-run correlations across
assets. Table |3[ shows that Bitcoin is mostly uncorrelated with all reserve assets, except the

stock market, with which Bitcoin has a moderate positive correlation.
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Figure 9: A heatmap of the posterior degrees of freedom of Bitcoin, compared with Bitcoin’s
posterior long-run standard deviation. The sample standard deviation is plotted as a red

line.
Table 3: Median Posterior Long-Run Correlations
Bitcoin Gold Treasuries | Euro bonds | World stock
Bitcoin 1
Gold 0.07 1

Treasuries -0.01 0.21 1

Euro bonds 0.16 0.41 0.18 1

World stock 0.34 0.16 -0.08 0.36 1
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6 Model Validation

Gelman et al| (2013) describe posterior predictive checks as a means of validating Bayesian
models by simulating draws from the posterior distribution, and comparing those draws to
the observed data. Because I conduct portfolio choice optimization over simulated 3-month
periods, I simulate 3 months of returns (63 trading days) from the posterior distribution and
compare the simulations to rolling 3-month periods from the data in various ways.

The subsequent sections illustrate several posterior predictive checks for Bitcoin. Checks
for other assets in the model will be available in an online appendix. Overall, the model

captures the characteristics of Bitcoin over 3-month periods.

6.1 Gross Return

Figure|[10|demonstrates that the simulated returns are significantly more pessimistic than
rolling 3-month periods in the sample. This is an intended consequence of the informative

prior.
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Gross Return Comparison, 3-Month Periods
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Figure 10: A comparison of gross returns from the model simulations, and gross returns from
rolling 3-month periods in the data.

6.2 Correlation

Figures [I1] and [12] compare simulated correlations between Bitcoin and each other asset
to 3-month rolling periods in the data. In all cases, the simulations are in strong agreement

with the data. Other comparisons can be found in the appendix.
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Correlation Comparison, 3-Month Periods
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Figure 11: A comparison of the correlation between Bitcoin and gold from the model simu-
lations, and the same correlation from rolling 3-month periods in the data.
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Correlation Comparison, 3-Month Periods
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Figure 12: A comparison of the correlation between Bitcoin and world stock from the model
simulations, and the same correlation from rolling 3-month periods in the data.
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6.3 Standard Deviation

Figure (13| shows that the standard deviation of Bitcoin’s log returns in the simulations
aligns well with rolling periods in-sample. The standard deviation of the simulations has a

long right tail.

Standard Deviation Comparison, 3-Month Periods
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Figure 13: A comparison of the standard deviation of Bitcoin from the model simulations,
and the same standard deviation from rolling 3-month periods in the data.

6.4 Skewness

Figure |14] demonstrates that the skewness in the Bitcoin simulations is centered at zero,
because of the symmetric Student-t distribution of the error term. The simulations assign
less mass to the left tail of the skewness distribution, compared to the sample.

While GARCH models are often estimated using skewed distributions for the error term,
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doing so is not practical with an informative prior on the mean return. If the mean return is
time-invariant, then the location parameter of the skewed distribution must shift every time
period as a function of the skewness and variance, which is not computationally feasible. In
my model, although the log returns are unskewed, the gross returns are positively skewed
(as a result of the exponential transformation) consistent with the findings of Farago and

Hjalmarsson (2019).

Skewness Comparison, 3-Month Periods
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Figure 14: A comparison of the skewness of Bitcoin from the model simulations, and the
same skewness from rolling 3-month periods in the data.

6.5 Excess Kurtosis

Figure shows that the simulations slightly understate the kurtosis of Bitcoin (by

contrast, the simulations slightly overstate the standard deviation, in Figure . It is
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plausible that the extreme tail risk posed by Bitcoin gradually declined over time as Bitcoin
becomes more widely adopted, so that the kurtosis in-sample overstates Bitcoin’s tail risk

measured today.

Kurtosis Comparison, 3-Month Periods
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Figure 15: A comparison of the excess kurtosis of Bitcoin from the model simulations, and
the same excess kurtosis from rolling 3-month periods in the data.

7 Portfolio Choice Optimization

According to the International Monetary Fund |Guidelines for Foreign Exchange Reserve
Management|| (2005), central banks tend to review the performance of their reserves quar-
terly. Therefore, I simulate quarters of returns (63 trading days) from the statistical model.
I assume no leverage and no shorting.

After drawing 250,000 simulations from the dynamic Bayesian model, I employ a rejection
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sampling procedure designed to ensure that the samples are plausible and the portfolio
optimization process is numerically stable. It is likely that the heavy-tailed distributions used
in my GARCH model, combined with the uncertainty in the long-run variance of the assets,
overstate the amount of probability mass in the far tails of the distribution. Additionally,
my model does not capture lower-frequency mean-reversion that might reduce the variance.
To correct this misspecification, I compute the gross return of each asset for each quarterly
sample, and I reject the sample if, for any asset, the corresponding cumulative log return is
outside the interval (63 * Eu; — log(k), 63 * Eu; + log(k)). I compute the interval width k& by
calculating the square of the maximum gain or loss across all 3-month rolling periods in the
data. For example, if Bitcoin’s best performance across rolling periods in the sample was
a 4x return, and its worst performance was a 0.5x return, I set k = maz(4,1/0.5)* = 16.
This rejection sampling results in discarding less than 0.5% of the simulated data, but
ensures that all accepted samples are economically plausible and the sample variances are
numerically stable. Moreover, this procedure preserves the dynamic structure of returns and
average compound return within accepted samples.

The portfolio optimization process only considers financial characteristics of the reserve
assets. Of course, central banks face many other considerations when allocating their port-
folios. In particular, central banks may prefer to align their reserve currency composition
with the currency composition of their imports, external debts, and the currency peg (if
any). Matching the currency composition of reserve assets with the currency composition of
consumption minimizes variability measured in units of consumption. I address these factors
(which are exogenous to my model) by implementing constraints, detailed below, for some
optimizations that include the risk of financial sanctions. Those constraints correspond to
global average reserve shares. Holding the traditional reserve assets in fixed proportions can
also be interpreted as enforcing a desire to minimize transaction costs, especially regarding
costlier transactions in Bitcoin and physical gold. Insofar as the inputs for the optimiza-

tion procedure are derived from a Bayesian statistical analysis, this approach is analogous
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to that of Black and Litterman (1992), who adapt the classic mean-variance framework of
Markowit7 (1952)|in a Bayesian setting. Moreover, my mean-variance approach is similar to
that of Papaioannou, Portes, and Siourounis (2006), who use a mean-variance framework to
estimate the optimal euro share of reserves.

When modeling sanctions, I treat the sanctions probabilities as exogenous relative to the
central bank’s decisionmaking. I am unaware of any instance where a central bank’s actions
provided the primary impetus for a third party to freeze the central bank’s reserves. Rather,
sanctions result from political decisions made by leaders external to the central bank, of
which the central bank probably would not have advance notice. I assume that the US and
EU may separately choose to apply sanctions to the central bank, resulting in the total loss
of the central bank’s US Treasuries or Euro bonds, but leaving the central bank’s gold and
cryptocurrency untouchedﬂ [ assume that US sanctions result in a 2/3 loss in the value
of the global stock holdings, while EU sanctions result in a 1/3 loss (a total loss occurs if
both US and EU sanctions are applied). In my base case, the probability of US sanctions
is 1/100, the probability of EU sanctions is 1/200, and the correlation coefficient between
the two is 0.4. I implement the correlation across sanctions probabilities with a Gaussian

copula. I conduct sensitivity analysis by varying these parameters, as shown in Table [4]

24Tn assuming that gold is not affected by sanctions, I implicitly assume that the central bank retains physical
custody of its gold, rather than storing its gold within third-party custodians such as the vaults of the
New York Fed. I do not account for the cost of transporting or storing gold.
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Table 4: Scenarios for Portfolio Optimization with Sanctions

Scenario US Sanction EU Sanction US & EU
Probability Probability Correlation
Base Case 1/100 1/200 0.4
High Risk 1/10 1/20 0.4
Low Risk 1/1000 1/2000 04
High Correlation 1/100 1/200 0.8
Low Correlation 1/100 1/200 0

To implement mean-variance preferences, I solve the following optimization problem,

where 1) is the degree of risk aversion:

N N,
sim sim o 1 N sim T

maximize —Y Z /Noim Zk )’

’U._; stm ]:1 szm
subject to w; >0, 1=0,..., Nygsets, (12)
Nassets

IR
i=1

x; is the geometric return resulting from the ¢th simulation, and 0 < €, < 1 is an

indicator for the extent of sanctions applied to asset k:

k=Ngssets T=63 1/63
— ( Z Qk:'LUk H 6.Tp(Ti7k7t)> —1 (13)
k=1 t=1

Two aspects of this optimization process are noteworthy. First, I assume that the central
bank does not rebalance cross assets within the quarter. Chinn, Ito, and McCauley (2021)
find mixed evidence regarding whether central banks rebalance. By assuming no rebalancing,

I avoid the necessity of accounting for transaction costs regarding physical gold and Bitcoin,
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which are likely to be much more costly than transactions in fiat assets. Additionally,
without rebalancing, the timing of sanctions within the quarter does not affect the final
portfolio value, which simplifies the optimization procedure.

Second, I operate using the geometric return rather than the expected return. The
geometric return is the best measure of performance over longer periods of time (such as
63 trading days), because the geometric return accounts for volatility decay. As Hughson,
Stutzer, and Yung (2006) point out, the expected return of highly volatile assets is much
higher than their compound return, because an asset which experiences a sequence of equal
percentage gains and losses does not return to its starting value. Accounting for volatility
decay over the appropriate time horizon is particularly important when modeling Bitcoin,
which will appear more attractive over shorter holding periods where the effect of volatility
decay is less pronounced. Computing the geometric return over 63 trading days produces
results that are similar to those that I would obtain from optimization using the continuously-

compounded log returns, a procedure that Zhang (2021)| explores.

7.1 Without Sanctions

Figure (16| displays optimal shares without sanctions. The results show that an investor
will blend an increasing share of a safe asset (Treasuries) with a set of risky assets (stocks
and cryptocurrency) as the investor becomes more risk averse. The investor does not hold
Euro bonds because the exchange rate risk is not compensated, and similarly, gold is not
particularly attractive as long as Treasuries pay a positive real rate of return. Even the most

risk-averse investor holds 2-3% in Bitcoin 7]

25 As a point of comparison, El Salvador’s Bitcoin represents about 1.4% of its international reserves, as of
September 2022.

39



Optimal Shares Without Sanctions
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Figure 16: Optimal asset shares with mean-variance preferences.

7.2 With Sanctions, Varying All Shares

Figure (17| displays optimal Bitcoin shares in the mean-variance framework and the base
sanctions case. Sanctions motivate major changes in the portfolio shares. Notably, the most
risk-averse investor will diversify across all five assets, gold becomes far more attractive,

Euro bonds are more appealing than US Treasuries due to their lower sanctions risk, and

the optimal Bitcoin share rises to about 5%.
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Optimal Shares With Sanctions
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Figure 17: Optimal asset shares with mean-variance preferences and sanctions.

7.3 With Sanctions, Varying Bitcoin Only

The allocations proposed in Figure [17] may not be feasible for some central banks, who

cannot acquire or store such a large quantity of physical gold | Furthermore, as previously

mentioned, central banks may prefer (to the extent possible) matching their currency com-

position with the currency composition of their imports and external debts. Therefore, I

repeat the portfolio optimization varying only the Bitcoin share, assuming that the rest of

the portfolio consists of 12% gold, 51% US Treasuries, 17% Euro bonds, and 20% world

stock. These percentages approximately correspond to global averages. Accordingly, this

analysis addresses the question of how much Bitcoin a representative central bank might

want to add to its existing reserve holdings in order to address its sanctions risk, without

26 About $150 billion of gold, or 3,000 metric tons, is mined every year.
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radically altering its existing holdings.
Figures |18 and (19| display results when varying only the Bitcoin share. In this case, the
central bank will hold a significant share of Bitcoin to hedge against sanctions, especially

when the US and EU sanctions are highly correlated.

Optimal Bitcoin Shares With Sanctions
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Figure 18: Optimal Bitcoin shares with mean-variance preferences and sanctions, varying
only Bitcoin.
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Optimal Bitcoin Shares With Sanctions
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Figure 19: Optimal Bitcoin shares with mean-variance preferences and sanctions, varying
only Bitcoin.

7.4 With Sanctions, Varying Gold and Bitcoin

To explore the extent to which gold and Bitcoin are substitutes as hedges against sanc-
tions risk, I vary both the gold and Bitcoin share, assuming that the rest of the portfolio
is allocated 58% to Treasuries, 19% to Euro bonds, and 23% to world stock (approximate
global averages).

Figures 20| and [21] display the results. Although the central bank holds additional Bitcoin
compared to the scenario without sanctions, gold is the preferred asset to hedge against
sanctions risk. Specifically, the risk of international sanctions rationalizes holding gold even
when Treasuries offer less volatility and a positive real return. Moreover, in the lowest risk

case, the optimal gold share rises as a function of risk aversion.
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Optimal Gold Shares, Varying Gold and Bitcoin
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Figure 20: Optimal gold shares with mean-variance preferences and sanctions, varying gold
and Bitcoin.
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Optimal Bitcoin Shares, Varying Gold and Bitcoin
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Figure 21: Optimal Bitcoin shares with mean-variance preferences and sanctions, varying
gold and Bitcoin.
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8 Conclusion

The risk of financial sanctions by major fiat reserve currency issuers has significant im-
plications for central banks, some of whom may not be able to count on US Treasuries or
AAA-rated Euro bonds as safe assets. Indeed, in the presence of sanctions, there is no to-
tally safe asset. Cryptocurrencies offer some protection against sanctions, but introduce the
risk of high price volatility. The price of gold is also more volatile than that of Treasuries
or Euro bonds. Although holding physical gold also provides protection against sanctions,
gold is less liquid than fiat assets, and assuming physical custody of gold entails significant
logistical and security costs.

There are several avenues for further research. It is possible that different copulas and
error distributions may generate even more realistic simulations. The objective function
could be modified in many other ways, such as to express loss aversion. A model featuring
rebalancing and portfolio adjustment costs might also be more realistic, at the expense of
introducing additional parameters. The outputs of this model — optimal portfolio shares as
a function of risk aversion and sanctions risk — could be aggregated across a distribution of
countries to form demand curves for each asset, creating a general equilibrium model that
could be used to estimate the implicit cost of US financial sanctions in terms of their effect
on US or EU interest rates.

To the extent that China’s economic and political objectives do not align with those of
the US and EU, it is conceivable that sanctions risk by the Chinese government is negatively
correlated with that of the US and EU. This ”feature” of the renminbi may boost its at-
tractiveness as a reserve asset, and reduce the appeal of cryptocurrency for countries that
hold renminbi. Like cryptocurrency, the optimal renminbi allocation rises as the correlation
between US and EU sanctions rises.

If a central bank does decide to purchase cryptocurrency, the central bank faces a choice
of whether to publicly reveal that decision. Choosing to conceal the central bank’s Bitcoin

allocation might further stymie external attempts to freeze the central bank’s assets. Fer-
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ranti (2022)| discusses the fact that many central banks do not disclose their fiat reserve
currency composition. Revealing the central bank’s cryptocurrency wallets enables public
verification of the central bank’s assets, but requires the central bank to accept scrutiny
regarding its choice to invest in a highly volatile asset. Aizenman and Inoue (2012)|find that
central banks tend to underreport their gold holdings to avoid criticism when the price of
gold declines.

Lastly, central bank digital currencies may enhance the benefits of cryptocurrency. The-
oretically, a central bank could conduct a foreign exchange intervention relying solely upon
domestic payments infrastructure by offering to sell the central bank’s cryptocurrency to
holders of the central bank’s digital currency. In that sense, a country’s decision to embrace

cryptocurrency may boost its resilience to economic shocks.
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A Stablecoins

”Stablecoins” are a different type of cryptocurrency that attempt to maintain a fixed
exchange rate against an external quantity, often the US dollar. Stablecoins attempt to do
so primarily in two different ways. First, some stablecoin issuers hold US dollar collateral,
such as Treasury bills or commercial paper. Second, some stablecoin issuers accept other
cryptocurrencies as collateral (including other stablecoins), usually over-collateralizing their
US dollar obligations to account for the high price volatility of cryptocurrency. Executing a
stablecoin trade over the Ethereum network requires paying a small quantity of Ether as a
transaction ("gas”) fee. Because stablecoin issuers need to hold and transact in collateral,
stablecoins are inherently more centralized than Bitcoin and Ether. In fact, the two largest
stablecoin issuers, Circle (which issues US Dollar Coin) and Tether (which issues Tether)
retain the ability to block cryptocurrency wallets containing their stablecoins, freezing the
stablecoins. As of July 28, 2022, Circle has blocked 48 Ethereum Wallets{T_TI and Tether
has blocked 692 Ethereum wallets No stablecoin currently exists which is resistant to
sanctions, backed by sufficient collateral to preclude the risk of losing its peg, and sufficiently
liquid to accommodate a central bank’s transactions (billions of US dollars).

A stablecoin that is sufficiently decentralized that its issuer could not block transactions
probably would need to rely heavily on algorithms for its implementation (introducing various
security risks) and exclusively accept other cryptocurrencies as collateral. However, the track
record of so-called ”algorithmic” stablecoins that are backed by other cryptocurrencies is
mixed. In May 2022, the $19 billion stablecoin TerraUSD collapsed when the value of its
collateral, another cryptocurrency called Luna, cratered. Many other algorithmic stablecoins,
including Basis Cash, Iron Finance, SafeCoin, BitUSD, DigitalDollar, NuBits, and CK USD

have also failedF_g] Klages-Mundt and Minca (2021)| provide a stochastic model that captures

2Thttps://dune.com/phabc/usdc-banned-addresses

Zhttps://dune.com/phabc/usdt—banned-addresses

https://indianexpress.com/article/technology /crypto/luna-terra-crash-a-brief-history-of-failed-
algorithmic-stablecoins-7934293/
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the deflationary deleveraging that the algorithmic stablecoin Dai experienced in March 2020.
Speculators who exchanged other cryptocurrencies for Dai were forced to repurchase Dai as
their collateral dropped in value, in some cases facing forced liquidation of their collateral
at a price of zero due to Ethereum network congestion and illiquidity. As a result, Dai
became undercapitalized, while its price rose as high as $1.13. To address this crisis, the
Dai governance community (holders of the MKR token) issued additional equity-like MKR
tokens to recapitalize Dai, and voted to begin accepting US dollar-backed stablecoins as
collateral in order to stabilize the price of Dai. Since March 2020, Dai has successfully
maintained its $1.00 soft peg. Dai is currently the largest stablecoin whose governance
process is sufficiently decentralized that Dai tokens cannot be blocked or frozen. However, if
Dai became widely used as a means of evading sanctions, it would be vulnerable to having
its stablecoin collateral frozen, potentially precipitating a collapse in the value of Dai.

Any investor that holds an algorithmic stablecoin backed exclusively by decentralized
collateral necessarily assumes intermediation risk. It may be impossible to develop an al-
gorithmic stablecoin that is both resistant to sanctions and capable of maintaining a $1.00
soft peg without directly or indirectly holding fiat collateral. Stablecoins will likely remain
an active domain for financial innovation, but they do not currently appear to be suitable

as reserve assets.
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B Market Characteristics of Bitcoin

B.1 Liquidity

In order to be suitable for institutional investment, such as by central banks, it must be
possible to transact in billions of dollars of Bitcoin without incurring extravagant costs. The
Bitcoin network structure favors large block trades because transaction fees paid to miners
are fixed, not a percentage of the transaction, and those fees are typically just a few dollars
(converted from units of Bitcoin), as illustrated in Figure . The average daily trading
volume of Bitcoin is also on par with other major reserve assets, as displayed in Figure [23|
Lastly, Figure shows that the bid / ask spreads of Bitcoin average 0.1% or less across

multiple exchanges.
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Figure 22: The average transaction fee for processing an on-chain Bitcoin transaction. The
fee is paid in Bitcoin, but converted to US dollars for this chart.
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Average Daily Trading Volume (2021)
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Figure 23: Average daily trading volume of major reserve assets and cryptocurrencies, in-
cluding stablecoins Tether and US Dollar Coin.
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Bitcoin Bid / Ask Spread

0.25

— bitfinex
— bitstamp
cex.io
— coinbase
—exmo

gemini
— kraken

Spread (Percent)

Source: bitcoinity.org

Figure 24: The bid / ask spread of Bitcoin across several cryptocurrency exchanges.
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B.2 Flight to Safety

As a risky asset, Bitcoin has historically not exhibited a flight to safety effect; Bitcoin’s
price tends to fall during periods of economic turmoil. Indeed, Figure [25[shows that Bitcoin
declined concurrent with Russia’s invasion of Ukraine in February 2022. However, the figure
also shows that Bitcoin sharply appreciated immediately following the US Treasury’s sanc-
tions against the Central Bank of Russia. Therefore, the decentralized nature of Bitcoin may
provide some insurance value against deglobalization shocks, such as the disruption caused
by sanctions. This hypothesis is consistent with Aysan et al, (2019), who find that Bitcoin

hedges geopolitical risks.

B.3 Store of Value

Estimating the fundamental value of Bitcoin is an active area of research. One strand
of literature argues that the fundamental value of Bitcoin is zero. For example, Cheah and
Fry (2015) apply statistical tests to Bitcoin’s early history and argue that Bitcoin prices
constitute a speculative bubble. To the contrary, Biais et al, (2022) argue that Bitcoin
should be valued based on its stream of net transactional benefits, including the evasion of
government capital controls. Hayes (2019)|finds that the price of Bitcoin loosely corresponds
to Bitcoin’s marginal cost of production.

Indeed, there are several reasons to believe Bitcoin’s fundamental value is positive (even if
difficult to determine). First, Bitcoin is a resource for which there are no obvious substitutes.
Bitcoin is the largest proof-of-work currency by nearly two orders of magnitude. Network
effects in the world of cryptocurrency appear to be very strong; efforts to improve Bitcoin by
altering aspects of the Bitcoin architecture (such as the 2017 hard fork that spawned ” Bitcoin
Cash,” a version of Bitcoin that can process more on-chain transactions per second) have not
seriously rivaled Bitcoin’s popularity. Rather than altering the Bitcoin architecture itself,
efforts to improve Bitcoin’s functionality currently focus on designing methods to transact

off-chain, such as the Lightning network, which offers faster transactions and reduced fees.
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Gross Returns, Relative To 2022 Ukraine Invasion
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Figure 25: The price returns of reserve assets and Bitcoin, normalized to $1 on February 24,
2022, the day Russia invaded Ukraine. The dashed line indicates 5:00 AM EST on February
28, 2022, when the US Treasury Office of Foreign Assets Control sanctioned the Central
Bank of Russia.

Implicitly, these innovative efforts acknowledge the robustness of Bitcoin to usurpation by
clones or other rivals.

Second, the total quantity of Bitcoin is capped at approximately 21 million (the total
quantity of Ether is not capped, but the proof-of-stake update is expected to result in defla-
tion)m After the last Bitcoin is mined in 2140, miners will compete to receive transaction
fees for their services, but will not receive any newly minted Bitcoin. Although scarcity

does not necessarily imply value, the quantity limit does effectively prevent Bitcoin from

30https://blockchain.news/analysis /ethereum-2.0-full-upgrade-will-prompt-a-1-percent-annual-deflation-
rate
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experiencing devaluation through hyperinflation.

Third, Bitcoin’s volatility does not preclude its functioning as a store of value. Gold,
a reserve asset widely regarded as a store of value, has experienced significant real losses
over prolonged periods of time. Harmson (1998)| illustrates that gold tends to maintain its
purchasing power over centuries, but the price of gold can experience significant fluctuation
over 10- or 20-year periods. Indeed, Figure 20| illustrates that the real price of gold expe-
rienced an 86% decline over approximately a 21-year period beginning in 1980. Similarly,
since Bitcoin’s third "halving” event in July 2016 (which reduced the rate at which Bitcoin
is mined), Bitcoin experienced a maximum real drawdown of 83% from December 2017 to
December 2018@ Superimposing the Bitcoin and gold price graphs reveals several similari-
ties, including the concavity, the pattern of volatility clustering towards the beginning of the

series, and the magnitude of the price decline.

31Earlier in its history, Bitcoin experienced a 94% nominal drawdown in 2011, declining from $32 to $2. But
Bitcoin was a riskier asset in 2011, since it was just two years old and much less widely adopted, making
Bitcoin’s future prospects in 2011 substantially more uncertain.
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Figure 26: The real return of Bitcoin and gold, measured from peak to trough of gold’s
largest drawdown in the last 50 years, and Bitcoin’s largest drawdown since July 2016 (the
date of Bitcoin’s third "halving” event, which reduces the mining rate of Bitcoin).

61



C Inverse Student-T Distribution Approximation

The first four terms of the Cornish-Fisher approximation are given in Abramowitz and
Stegun (1972). These terms expand the inverse Student-t distribution around the inverse
Normal distribution, exploiting the fact that the t-distribution and Normal distribution are
"close.” The approximation error falls as the degrees of freedom rise, but the error rises in

the tails of the Student-t distribution.

Tyt (z) ~ 2
2(22 4+ 1)
4\
2(52* +162% + 3)
962
2(32° + 192 + 1722 — 15)
384\3
| 2792 7760 + 14822 — 192022 — 945)

92160A%

In order to improve this approximation, I also implement a power series expansion for
the tails of the Student-t distribution, where the Cornish-Fisher expansion performs poorly.
The tail series performs better when the degrees of freedom are small, making a good pairing
with the Cornish-Fisher expansion. Shaw (2006) gives the series expansion, where w is an
auxiliary variable and y,(w, \) is a series of polynomial terms, with n being the order of the

expansion. I carry the expansion to six terms.

I'(A/2)

w(z, N) = (1 —)VArpa o s

Tt (@) =~ VA V) P 5 (14 gy (w, A) + ya(w, X) + ... + yn (w, N))

I fit a logistic function, g = to estimate the crossover quantiles, as a function of

1
1+exp(kX)
the degrees of freedom, where the error in the Cornish-Fisher expansion equals that of the

tail series. I find that & = —1.09080618.
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Inverse Student-T Distribution Approximation Error

0.14 - Quantile
—— 0.9

S 0.12- — 0.99
o 10. —— 0.999
o —— 0.9999
2 0.08 1 —— 0.99999
[a
 0.06 -
=
2 0.04 -
o)
< 0.021

0.00 - “‘5“‘ — =

2 4 6 8 10 12 14 16 18 20
Degrees of Freedom

Figure 27: The percent error in the combined inverse Student-t distribution approximation,
switching between the Cornish-Fisher and tail series based on the fitted logistic function.
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