Understanding the Open Cybersecurity
Schema Framework

Author: Paul Agbabian
Date: August 2022
Status: RFC

Version: 1.8

Introduction to the Framework and Schema

This document describes the Open Cybersecurity Schema Framework (OCSF) and its taxonomy,
including the core cybersecurity event schema built with the framework.'

The framework is made up of a set of data types, an attribute dictionary, and the taxonomy. It is
not restricted to the cybersecurity domain nor to events, however the initial focus of the
framework has been a schema for cybersecurity events. A schema browser for the schema can
be found at schema.ocsf.io.

OCSF is agnostic to storage format, data collection and ETL processes. The core schema is
intended to be agnostic to implementations. The schema framework definition files and the
resulting normative schema are written as JSON.

Personas

There are four personas that are users of the framework and the schema built with the
framework.

The author persona is who creates or extends the schema. The producer persona is who
generates events natively into the schema. The mapper persona is who translates or creates
events from another source to the schema. The analyst persona is the end user who searches
the data, writes rules or analytics against the schema, or creates reports from the schema.

For example, a vendor may write a translation from a native source format into the schema but
also extend the schema to accommodate vendor specific attributes or operations. The vendor is
operating as both the mapper and author personas. A SOC analyst that collects the data in a
SIEM system writes rules against the events and searches events during investigation. The SOC
analyst is operating as the analyst persona. Finally, a vendor that emits events natively in OCSF
form is a data producer.

' OCSF includes concepts and portions of the ICD Schema, developed by Symantec, a division of
Broadcom and has been generalized and opened under Apache 2 license with their permission.

Open Cybersecurity Schema Framework 1

mailto:pagbabian@splunk.com
https://schema.ocsf.io

Taxonomy Constructs

There are 6 fundamental constructs of the OCSF taxonomy:

Data Types, Attributes and Arrays
Attribute Dictionary

Event Class

Category

Profile

Extension

oA wN =

The scalar data types are defined on top of primitive data types such as strings, integers, floating
point numbers and booleans. Examples of scalar data types are Timestamp, IP Address, MAC
Address, Pathname, and User Name.

An attribute is a unique identifier name for a specific field and a corresponding validatable data
type, either scalar or complex.

Complex data types are termed objects. An object is a collection of contextually related
attributes, usually representing an entity, and possibly includes other objects. Each object is also
a data type in OCSF. Examples of object data types are Process, Device, User, Malware and File.

Arrays support any of the data types.

Most scalar data types have constraints on their valid values or ranges, for example Enum integer
types are constrained to a specific set of integer values. Enum integer typed attributes are an
important part of the framework constructs and used in place of strings where possible to ensure
consistency.

Complex data types, or objects, can also be validated based on their particular structure and
attribute requirements. Attribute requirements are discussed in a subsequent section.

Appendix A and B describe the OCSF Guidelines and data types respectively.

The attribute dictionary of all available attributes, and their types are the building blocks of the
framework. Event classes are particular sets of attributes from the dictionary.

Events in OCSF are represented by event classes which structure a set of attributes that attempt
to describe the semantics of the event in detail. An individual event is an instance of an event
class. Event classes have schema-unique IDs. Individual events may have globally unique IDs.

Each event class is grouped by category, and has a unique category uid attribute value
which is the category identifier. Categories also have friendly name captions, such as System
Activity, Network Activity, Security Findings, etc. Event classes are grouped into categories for a

Open Cybersecurity Schema Framework 2

number of purposes: a container for a particular event domain, documentation convenience and
search, reporting, storage partitioning or access control to name a few.

Profiles overlay additional related attributes into event classes and objects allowing for
cross-category event class augmentation and filtering. Event classes register for profiles which
can be optionally applied, or mixed into event classes and objects, by a producer or mapper. For
example, System Activity event classes may also include attributes for malware detection or
vulnerability information when an endpoint security product is the data source. Network Activity
event classes from a host computer may carry the device, process and user associated with the
activity. A Malware profile or Host and User profiles can be applied in these cases.

Finally, extensions allow the schema to be extended using the framework without modification of
the core schema. New attributes, objects, event classes, categories and profiles are all available
to extensions. Existing profiles can be applied to extensions, and new profiles can be applied to
core event classes and objects as well as to other extensions.

The schema browser visually represents the categories, event classes, dictionary, data types,
profiles and extensions in a navigable portal.

Comparison with MITRE ATT&CK? Framework

The MITRE ATT&CK Framework is widely used in the cybersecurity domain. While the purpose
and content type of the two frameworks are different but complementary, there are some
similarities with OCSF’s taxonomy that may be instructive to those with familiarity with ATT&CK.

Categories are similar to Tactics, which have unique IDs. Event Classes are similar to Techniques,
which have unique IDs. Profiles are similar to Matrices®, which have unique names. Type IDs are
similar to Procedures which have unique IDs. Profiles can filter the Event Classes and Categories
similar to how Matrices filter Techniques and Tactics.

Differences from MITRE ATT&CK are that in OCSF, Event Classes are in only one Category, while
MITRE ATT&CK Techniques can be part of multiple Tactics. Similarly MITRE ATT&CK Procedures
can be used in multiple Techniques. MITRE ATT&CK has Sub-techniques while OCSF does not
have Sub-Event Classes.*

OCSF is open and extensible by vendors, and end customers while the content within MITRE
ATT&CK is released by MITRE.

2 MITRE ATT&CK: https://attack.mitre.org/

3 MITRE ATT&CK Matrix: https://attack.mitre.org/matrices/enterprise/
* The internal source definition of an OCSF schema can be hierarchical but the resulting compiled schema
does not expose sub classes.

Open Cybersecurity Schema Framework 3

https://schema.ocsf.io

Attributes

Attributes and the dictionary are the building blocks of a schema. This section discusses OCSF
attribute conventions, requirements, groupings, constraints, and some of the special attributes
used in the core cybersecurity schema.

In general, an attribute from the dictionary has the same meaning everywhere it is used in a
schema. Some attributes can have a meaning that is overloaded depending on the event class
context where they are used. In these cases the description of the attribute will be generic and
include a ‘see specific usage’ instruction to override its description within the event class context
rather than in the dictionary.

Conventions

OCSF adheres to naming conventions in order to more easily identify attributes with similar
semantics. These conventions take the form of standard suffixes and prefixes. The standard
suffixes are:

id, uid, uuid, ip, name, info, time, process, _ver

Attribute names for values that are unique within the schema end with _uid. Certain
schema-unique attributes that also have a friendly name or caption have the same prefix but by
convention use the name suffix. For example, class uidand class name, or

category uidandcategory name.

Attribute names for values that are globally unique end with _uuid. They do not have friendly
names.

Attributes that refer to a source event literal value are prefixed with ref . For example,

ref event code,ref time,ref event name.

Enum Attribute Conventions

Attributes that are of an Enum integer type end with _id. Enum constant identifiers are integers
from a defined set where each has a friendly name label.

By convention, every Enum type has two common values with integer value O for Unknown and
-1 for Other.

If a source event has missing values that are required by the event class for that event, an
Unknown value should be set for Enum types which is also the default.

If a mapped event attribute does not have a desired enumeration value corresponding to a value
of the raw event, Other is used which indicates that a companion string attribute is populated

Open Cybersecurity Schema Framework 4

with the custom attribute value. The string attribute has the same name, minus the suffix. For
example, activity idandactivity,or severity idand severity.

For all defined enumeration integer values, the label for the item also populates the companion
string attribute. That is, both the integer value and the string attribute are always set. If the Enum
attribute is required, then both the integer attribute and the string attribute are required. Attribute
requirements are discussed in a subsequent section.

Reserved Attribute Conventions

Reserved attributes are populated by a collection, processing or storage system and when
defined within an event class are not populated by the producer or mapper personas. Their
names are prefixed with an underscore by convention.

The reserved attributes are _raw data, time, uid. These attributes are discussed in
subsequent sections.

Attribute Requirement Flags

Attributes in the context of an event class have a requirement flag, that depends on the
semantics of the event class. Attributes themselves do not have a requirement flag, only within
the context of event classes.”

The requirement flags are:

e Required
® Recommended
e Optional

Event classes are designed so that the most essential attributes are required, to give enough
meaning and context to the information reported by the data source. If an attribute is required,
then a consumer of the event can count on the attribute being present, and its value populated.
If a required attribute cannot be populated for a particular event class, a default value is defined
by the event class, usually Unknown.®

® Event class validation is enforced via the required attributes, in particular the classification attributes,
which by necessity need to be kept to a minimum, as well as attribute data type validation and the event
class structure

® Required attributes that cannot be populated due to information missing from a data source must be
carried with the event as unknown values - asserting that the information was missing. Required attributes
that are mapped from a source event (rather than produced natively) may also be populated by a collection
or processing system, most notably the schema version attribute of the metadata attribute’s object.

Open Cybersecurity Schema Framework 5

Recommended attributes should be populated but cannot be in all cases and unlike required
attributes are not subject to validation. They do not have default values. Optional attributes may
be populated to add context and when data sources emit richer information.

Some event classes may specify constraints on recommended attributes. Constraints will be
discussed in the Event Class section.

Attribute Groups

Attributes are grouped for documentation purposes into Primary, Classification, Occurrence, and
Context groups. Classification and Occurrence groupings are independent of event class and
are defined with the attribute in the dictionary. Primary and Context attributes’ groupings are
based on their usage within a given event class.

Each event class has primary attributes, the attributes that are indicative of the event semantics in
all use cases. Primary attributes are typically Required, or Recommended per event class, based
on their use in each class. Primary attributes in the base event class apply to all event classes.

Attributes that are important for the taxonomy of the framework are designated as Classification
attributes. The classification attributes are marked as Required as part of the base event class.

Attributes that are related to time and time ranges are designated as Occurrence attributes. The
occurrence attributes may be marked with any requirement level, depending on their usage
within an event class.

Attributes that are used for variations on typical use cases, to enhance the meaning or enrich the
content of an event are designated as Context attributes. The context attributes may be marked
with any requirement level, but most often are marked as Optional.

Timestamp Attributes

Representing time values is one of the most important aspects of OCSF. For an event schema it
is even more important. There are time attributes associated with events that need to be
captured in a number of places throughout the schema, for example when a file was opened or
when a process started and stopped. There are also times that are directly related to the event
stream, for example event creation, collection, processing, and logging. The nominal data type
for these attributes is timestamp_t based on Unix time or number of milliseconds since the
Unix epoch.” The datetime t data type represents times in human readable RFC3339 form.

The following terms are used below:

Event Producer -- the system (application, services, etc.) that generates events. Related to the
producer persona.

’ Timestamp_ex profile adds sibling attributes to timestamp_t attributes based on RFC3339 text format.

Open Cybersecurity Schema Framework 6

Event Consumer -- the system that receives the events generated by the event producer.
Related to the analyst persona.

Event Processor -- a system that processes and logs, including an ETL chain, the events received
by the event consumer. Related to the mapper and analyst personas.

ref time: string

The original event time, as created by the event producer. The time format is not specified
by OCSF. The time could be UTC time in milliseconds (1659378222123), ISO 8601
(2019-09-07T15:50-04:00), or any other value (12/13/202110:12:55 PM).

_time: timestamp t

The normalized event occurrence time. Normalized time means the original event time
ref time was corrected for the clock skew and batch submission delay and after it was
converted to the OCSF timestamp t.

processed time: timestamp t

The time when the event (or batch of events) was sent by the event processor to the
event consumer. The processed time can be used to determine the clock skew. Clock
skew occurs when the clock time on one computer differs from the clock time on another
computer. Itis assumed that the transport latency is very small compared to the clock
skew, otherwise no correction should be made.

logged time: timestamp t
The time when the event consumer logged the event. It must be equal or greater than the
event time.

modified time: timestamp t
The time when the event was last updated or enriched. It must be equal or greater than
the event time. It could be less-than, equal, or greater-than the 1logged time.

start time/end time: timestamp t

The start and end event times are used when the event represents some activity that
happened over time, for example a vulnerability or virus scan. The other use-case is event
aggregation. Aggregation is a mechanism that allows for a high number of events of the
same event type that are raised to be summarized into one for more efficient processing.
For example netflow events. In this use case, the count integer attribute is also
populated.

Time Zone

The time zone where the event occurred is represented by the timezone offset attribute of
data type Integer. Although time attributes are otherwise UTC except for the pass through

Open Cybersecurity Schema Framework 7

attribute ref_time, most security use cases benefit from knowing what time of day the event
occurred at the event source.

timezone offset isthe number of minutes that the reported event time is ahead or behind
UTC, in the range -1,080 to +1,080. It is a recommended attribute of the base event class,
discussed next.

Metadata

Metadata is an object referenced by the primary required base event attribute metadata. As its
name implies, the attribute is populated with data outside of the source event. Some of the
attributes of the object are reserved, such as 1logged time and _uid, while the version
attribute is required - the schema version for the event. It is expected that a logging system may
assign the logged time and _uid at storage time. Note that a reserved attribute may have
any of the three requirement flags.

Metadata attributes such as modified time andprocessed time are optional.
modified time is populated when an event has been enriched or mutated in some way
before analysis or storage. processed time is populated typically when an event is collected
or submitted to a logging system.?

Version. OCSF core schema version uses Semantic Versioning Specification (SemVer), e.g.
0.11.0, which indicates to consumers of the event which attributes may be found in the event,
and what the class and category structure are. The convention is that the major version, after
1.0.0, or first part, remains the same while versions of the schema remain backwards
compatible with previous versions of the schema and framework. As new classes, attributes,
objects and profiles are added to the schema, the minor version, or second part of the version
increases. The third part is reserved for corrections that don’t break the schema, for example
documentation or caption changes.

Extensions, discussed later, have their own versions and can change at their own pace but must
remain compatible and consistent with the major version of the core schema that they extend.

Observables

Observable is an object referenced by the primary base event array attribute ocbservables. It
is populated from other attributes produced or mapped from the source event. An Observable
object (observable) surfaces in one place across any event while the security indicators that
populate it may occur in many places across event classes. In effect it is an array of summaries of

& Note that a non-trivial difference between the processed_time and the logged_time in UTC may indicate
a clock synchronization problem with the source of the event (and not necessarily the event source in the
event there is an intermediate collection system or forwarder).

Open Cybersecurity Schema Framework 8

those attributes regardless of where they stem from in the event based on their data type or
objecttype (e.g. ip_address, process, file etc).

For example, an IP address may populate multiple attributes: public ip,
intermediate ips, ip (as part of objects Endpoint, Device, Network Proxy, etc.). An
analyst may be interested to know if a particular IP address is present anywhere in any event.
Searching for the IP address value from the base event ocbservables attribute surfaces any of
these events more easily than remembering all of the attributes across all event classes that may
have an IP address.

Further, there are other attributes that may also need to be surfaced from the same event, which
is why observables is an array attribute of the base event class. The interesting attributes of
scalar or object data types are represented as strings, with an attribute type discriminator to
indicate the original type:

"observables": |

{

"name": "actor process",
"type": "Process",

"type id": 25,

"value": "Notepad.exe"
b

{

"name": "file.name",
"type": "File Name",

"type id": 7,
"value": "Notepad.exe"

1]

Enrichments

Enrichment is an object referenced by the primary base event array attribute enrichments. An
Enrichment object (enrichment) describes additional information added to the event during
collection or event processing but before an immutable operation such as storage of the event.
An example would be looking up location data on an IP address, or IOCs against a domain name
or file hash.

Open Cybersecurity Schema Framework 9

Because enriching data can be extremely open-ended, the object uses generic string attributes
along with a JSON data attribute that holds an arbitrary enrichment in a form known to the
processing system. Similar to the Observable object, name and value attributes are required to
point to the event class attribute that is being enriched. Unlike Observable, there is no
predefined set of attributes that are tagged for enrichment, therefore only a recommended type
attribute is specified (i.e. there is no type id Enum).

Also unlike Observable, which is synchronized with the time of the event, it is assumed that there
is some latency between the event time and the time the event is enriched, hence the base event
classmetadatamodified time should be populated at the time of enrichment.

For example

“metadata": {
"logged time": 1659056959885810,
"modified time": 1659056959885807,

"processed time": 165905695988579¢,

"sequence": 69,
"uid": "1310fc5c-0edb-11ed-88fc-0242ac110002",
"version": "0.11.0"

by

"enrichments": [

{

"data": {"hash":
0c5adle8fed3583e279201cdbl046aea742bae59685e6da24e963a41df9874941},

"

"name": "ip",

"provider": "media.defense.gov",

"type": "IP Address",

"value": "103.216.221.19"

br

{

"data": {"yara rule": wellmail unique strings \{ meta: description =

"Rule for detection of WellMail based on unique strings contained in
the binary" author = "NCSC" hash =

Open Cybersecurity Schema Framework 10

"0c5adle8fed3583e279201cdbl046aea’742bae59685e6da24e963a41d£987494"
strings: $a = "C:\\Server\\Mail\\App Datal\\Temp\\agent.sh\\src" $b =
"C:/Server/Mail/App Data/Temp/agent.sh/src/main.go" $c =
"HgQdbx4gRNv" S$d = "042a51567eeal9d5aca71050b4535d33d2ed43ba" $e =
"main.zipit" S$f = "Q@["\\s]+?\\s(?P.*?)\\s" condition: uint32(0) ==
0x464C457F and 3 of them \}"},

Hname" . "ip",

"provider": "media.defense.gov",
"type": "IP Address",

"value": "103.216.221.19"

}]

Event Class

Events are represented by instances of Event Classes, which are a particular set of attributes
and objects representing a log line or telemetry submission at a point in time. Event classes have
semantics that describe what happened, either a particular activity, disposition or both.

Each event class has a unique class uid attribute value which is the event class identifier.
Event class friendly names populate the class name attribute and are descriptive of some type
of activity, such as File Access Activity or Process Activity.

The semantics of the class are defined by the specific activity, via the activity id attribute,
such as File Opened or Process Started. Other attributes of the class indicate the details such as
the file name, or the process name.

Every event class has an activity, disposition or outcome, via the activity idand
disposition_ id Enum attributes, constrained to the values appropriate for each event class.
The activity id indicates what specific activity the event is reporting. The
disposition_ id indicates what the outcome or state of the activity was at the time of event
capture.

Not all event classes have a disposition id butallhaveanactivity id. Atypical use
of disposition idis when a security protection product detects a threat and blocks it. The
activity might have been a file open, but if the file was infected, the disposition would be that the
file open was blocked.

The unique combination ofa class uidand activity idordisposition idis
represented by the type uid derived attribute. When disposition id is populated as part

Open Cybersecurity Schema Framework 1

of an event class it is used ratherthan activity id asitis more representative of what
happened during the activity.

It is the intent of the schema to allow for the mapping of any raw event to a single event class.
This is achieved by careful design using composition rather than a multiple inheritance approach.
In order to completely capture the information in a rich data source, many attributes may be
required.

Unfortunately, aside from inconsistent naming and typing of extracted fields, driving the need for
normalization, not every data source emits the same information for the same observed behavior.
In the interest of consistency, accuracy and precision, the schema event classes specify which
dictionary attributes are essential, (recommended or required), while others are optional as not all
are needed across different data sources. Attribute requirements are always within the scope of
the event class definition and not tied to the attributes themselves.

Base Event Class Attributes

By convention, all event classes extend the Base Event event class. Attributes of the base event
class can be present in any event class and are termed Base Attributes.

The base event class has required, recommended, and optional attributes that apply to all core
schema classes. The required attributes, therefore, must be populated for every core schema
event. Individual event classes will add their own required and recommended attributes.
Optional base event class attributes may be included in any event class, along with event
class-specific optional attributes.

Examples of required base attributes are class uid, category uid, severity id.

Examples of recommended base attributes are timezone offset, status id /
status, product.

Examples of optional base attributes are, start time, end time, count, duration,
unmapped.

Special Base Attributes

There are a few base attributes that are worth calling out specifically. These are the unmapped
attribute, the _raw_data attribute and the type uid attribute.

While most if not all fields from a raw event can be parsed and tokenized, not all are mapped to
the schema. The fields that are not mapped may be included with the event in the optional
unmapped attribute.

The _raw data attribute holds the event data as received from the source. Itis unparsed and
represented as a String type.

Open Cybersecurity Schema Framework 12

The type uid attribute is constructed by the combination of the event class of the event
(class_uid)andits activity (activity id)ordisposition (disposition id). Itis unique
across the schema hence ithasa uid suffix. The type uid friendly name, type name, isa
way of identifying the event in a more readable and complete way. It too is a combination of the
names of the two component parts.

The value is calculated as: class _uid * 100 + activity id. For example:
type uid=3001 * 100 + 1 = 300101
type name = “Authentication Audit: Logon”

A snippet of a File Activity event example is shown below.

"category uid": 1,
"class uid": 1004,
"activity id": 2
"event name":

"event time": "1

"event uid": 100400,

: "File foobar.json openec

Constraints

A Constraint is a documented rule subject to validation that requires at least one of the specified
recommended attributes of a class to be populated. Constraints are used in classes where there
are attributes that cannot be required in all use cases, but in order to have unambiguous
meaning, at least one of the attributes in the constraint is required. Attributes in a constraint must
be Recommended.

Category

A Category organizes event classes that represent a particular domain. For example, a
category can include event classes for different kinds of events that may be found in an access
log, or audit log, or network and system events. Each category has a unique category_uid
attribute value which is the category identifier. Category IDs also have category_name friendly
name attributes, such as System Activity, Network Activity, Audit, etc.

An example of categories with some of their event classes is shown in the below table. Note,
these are not final.

Open Cybersecurity Schema Framework 13

System Activity | Network Activity | Audit Activity Findings Cloud Activity

File Activity Network Activity | Account Change | Security Finding | Cloud API

Folder Activity HTTP Activity Authentication Cloud Storage
Activity

Kernel Activity DNS Activity Authorization Cloud Virtual
Machine

Memory Activity | DHCP Activity Entity Change

Module Activity SSH Activity

Peripheral RDP Activity
Activity

Process Activity

Scheduled Job
Activity

Registry Key
Activity

Registry Value
Activity

Resource
Activity

Finding the right granularity of categories is an important modeling topic. Categorization is
weakly structural while event classification is strongly structural (i.e. it defines the particular
attributes, their requirements, and specific Enum values for the event class).

Many events produced in a cloud platform can be classified as network activity. Similarly, many
host system events include network activity. The key question to ask is, do the logs from these
services and hosts provide the same context or information? Would there be a family of event
classes that make sense in a single category? For example, does the NLB Access log provide
context/info similar to a Flow log? Does network traffic from a host provide similar information to
a firewall or router? Are they structured in the same fashion? Do they share attributes? Would we
obscure the meaning of these logs if we normalize them under the same category? Would the
resultant category make sense on its own or will it lose its contextual meaning all together?

Using profiles, some of these overlapping categorical scenarios can be handled without new
partially redundant event classes.

Open Cybersecurity Schema Framework 14

Profile

Profiles are overlays on event classes, effectively a dynamic mix-in class of attributes and
objects with their requirements and constraints.® While event classes specialize their category
domain, a profile can augment existing event classes with a set of attributes independent of
category. Attributes that must or may occur in any event class are members of the base event
class. Attributes that are specialized for selected classes are members of a profile.

Multiple profiles can be added to an event class via an array of profile values in the profiles
attribute. This mix-in approach allows for reuse of event classes vs. creating new classes one by
one that include the same attributes. Event classes and instances of events that support the
profile can be filtered via the profiles attribute across all categories.

For example, a Malware profile that adds MITRE ATT&CK and Malware objects to system activity
classes avoids having to recreate a new event class, or many classes, with all of the same
attributes as the system activity classes. A query for events of the class will return all the events,
with or without the security information, while a query for just the profile will return events across
all event classes that support the security profile. A Host profile and a User profile can add
Device, Process and User objects to network activity event classes when the network activity
log source is a user’s computer. A cloud provider profile could mix-in cloud platform specific
information onto network activity events.

Proposals for three built-in profiles for Malware, Host and User are shown in the below table
with their attributes.

Malware Profile Host Profile User Profile
disposition id / device user
disposition

attacks actor process is user present
cvssv2 user entities
malware / accounts
related malware

quarantine uid user result

Other profiles could be product oriented, such as Firewall, IDS, VA, DLP etc. if they need to add
attributes to existing classes. They can also be more general, platform oriented, such as for
cloud or Windows environments.

° Refer to Proposal 3: Profiles in the document OCSF Schema Collaboration: Initial Decisions

Open Cybersecurity Schema Framework 15

For example, AWS services log events with an ARN (AWS Resource Name) and an AWS IAM
Account. An AWS specific profile can be added to any event class or category of classes that
includes arn and IAM account attributes. Splunk Technical Add-ons would define a profile that
would be added to all events with Splunk’s standard source, sourcetype, host, attributes.

Profile Application Examples

Using example categories and event classes from a preceding section, examples of how profiles
might be applied to event classes are shown below.

System Activity

The following would all include the Host profile and may include the Malware profile:
File Activity

Folder Activity

Kernel Activity

Memory Activity

Module Activity

Peripheral Activity

Process Activity

Resource Activity

Scheduled Job Activity

Windows Activity

The following would include the Host profile and may include the Malware profile:
Registry Key Activity
Registry Value Activity

Network Activity

The following may include the Host profile and may include the Malware profile:
DNS Activity

HTTP Activity

Network Activity

Audit Activity

The following would include the User profile, may include the Host profile and would not include
the Malware profile:

Account Change

Authentication

Open Cybersecurity Schema Framework 16

Authorization
Entity Activity

Personas and Profiles

The personas called out in an earlier section, producer, author, mapper, analyst, all can consider
the profile from a different perspective.

Producers, who can also be authors, can add profiles to their events when the events will include
the additional information the profile adds. For example a vendor may have certain system
attributes that are added via an extension profile. A network vendor that can detect malware
would apply the Malware profile to their events. An endpoint security vendor can apply the Host,
User and Malware profile to network events.

Authors define profiles, and the profiles are applicable to specific classes, objects or categories.

Mappers can add the profile ID and associated attributes to specific events mapped to logs in
much the same way producers would apply profiles.

Analysts, e.g. end users, can use the browser to select applicable profiles at the class level. They
can use the profile identifier in queries for hunting, and can use the profile identifiers for analytics
and reporting. For example, show all malware alerts across any category and class.

Extensions

OCSF schemas can be extended by adding new attributes, objects, categories, profiles and
event classes. A schema is the aggregation of core schema entities and extensions.

Extensions allow a particular vendor or customer to create a new schema or augment an existing
schema.”® Extensions can also be used to factor out non-essential schema domains keeping a
schema small. Extensions to the core schema use the framework in the same way as a new
schema, optionally creating categories, profiles or event classes from the dictionary. Extensions
can add new attributes to the dictionary, including new objects. Extended attribute names can be
the same as core schema names but this is not a good practice for a number of reasons. As with
categories, event classes and profiles, extensions have unique IDs within the framework as well
as versioning."

One use of extensions to the core schema is the development of new schema artifacts, which
later may be promoted into the core schema. Another use of extensions is to add vendor specific
extensions to the core schema. In this case, a best practice is to prefix the schema artifacts with

'© An extension does not need to extend the core schema base class if it is a new schema.
" Reserved identifier ranges are registered within a file in the project GitHub repository. Extended events
should populate the metadata.version attribute with the extended schema version.

Open Cybersecurity Schema Framework 17

a short identifier associated with the extension range registered.” Lastly, as mentioned above,
entirely new schemas can be constructed as extensions.

Examples of new experimental categories, new event classes that contain some new attributes

and objects are shown in the table below with a Dev extension superscript convention. In the
example, extension classes were added to the core Findings category, and three extension
categories were added, Policy, Remediation and Diagnostic, with extension classes.

Findings

Policy®®"

Remediation®®¥

Diagnostic®®’

Incident Creation®®"

Clipboard Content
Protection®®

File Remediation®®"

CPU UsageP®®”

Dev

Incident Associate

Compliance®®”

Folder Remediation®®

Memory Usage®®

Remediation®®

Incident Closure®®¥ Compliance Scan®®" Unsuccessful StatusP®"
Remediation®®
Incident UpdateP®" Content Protection®® | Startup Application Throughput®®

Email Delivery
Finding®®”

Information
Protection®®

User Session
Remediation®®

A brief discussion of how to extend the schema is found in Appendix C.

Appendix A - Guidelines and Conventions

Guidelines for attribute names

e Attribute names must be a valid UTF-8 sequence.

Attribute names must be all lower case.
Combine words using underscore.

No special characters except underscore.

Reserved attributes are prefixed with an underscore.

2 The Schema Browser will label extensions with a superscript.

Open Cybersecurity Schema Framework

18

e Use present tense unless the attribute describes historical information.

e Use singular and plural names properly to reflect the attribute content.
For example, use events per sec rather than event per sec.

e When an attribute represents multiple entities, the attribute name should be pluralized and
the value type should be an array.
Example: process. loaded modules includes multiple values - a loaded module names list.

e Avoid repetition of words.

Example: host . host ip should be nost . ip.

e Avoid abbreviations when possible.
Some exceptions can be made for well-accepted abbreviations. Example: ip, or names such

as os, geo.

e For vendor extensions to the dictionary, prefix attribute names with a 3-letter moniker in order
to avoid name collisions. Example: aws finding, spk context ids.

Appendix B - Data Types

The predefined data types. The data type of a value specifies what kind of data that value can

have. Note type® denotes an observable type. _t attributes in parentheses denote internal JSON
schema type notation.

9]la-zA-Z0-9\-][a-zA-Z
0-9])\.)*([A-Za-z0-9][A-
Za-z0-9][A-Za-z0-9\- [
A-Za- z0-9)$

Attribute Base Constraint Description
Type
boolean_t false, true Boolean value. One of true or false.
email_t° String Ma-zA-Z0-9_.+-]+@[a-zA-Z | Email address. For example:
0-9-]+\.[a-zA-Z0-9-]+$ john_doe@example.com.

file_hash_t° String Max length: 64 File hash. A unique value that corresponds
to the content of the file.

file_name_t° String Na-zA-Z0-9._ J+$ File name. For example: text-file.txt.

float_t Real floating-point value. For
example: 3.14.

hostname_t° String ([a-zA-Z0-9]l[a-zA-Z0- | Unique name assigned to a device

connected to a computer network. A
domain name in general is an
Internet address that can be resolved
through the Domain Name System

Open Cybersecurity Schema Framework 19

Attribute Base Constraint Description
Type
(DNS). For example:
r2-d2.example.com.
ip_t° String Max length: 40 Internet Protocol address (IP
N?>(?>([a-f0-9{1,4))(?>:(| address), in eitherlPv4 or IPv6 format.
)N [a-fO-9](?>:]
ENBCNE>:(21){0,6))?:
(22(2>@>(2N) (>N
S5EI(?1(?:.*[a-fO-91){6.)(?
3)2:(2>((2N(?>:(?1)){0,4)):)
?)?(25[0-5]12[0-4][0-9]1[
0-912}I1-917[0-9))
(?>\.(?4))(3)))$/iD
port_t Integer 0-65,535 IP TCP/UDP port number. For
example: 8o or 22.
integer_t Signed integer value.
json_t Embedded JSON value. A value can
be a string, or a number, or true or
false or null, or an object or an array.
These structures can be nested. See
WWW.{son.org.
long_t 8-byte long, signed integer value.
mac_t° String Max length: 32 Media Access Control (MAC)
M[O-9A-Fa-fI12):-)){5)[0 | address. For example:
- 9A-Fa-f]2)$ 18:36:F3:98:4F: 9A,
object_t Object is an unordered set of
name/value pairs. For example:{ip:
92.24.47.250, type: IP Address}
path_t String M\pLO-9_H\pLO-9 File or folder full path name. For
@#%&H\-/_T'$ example:
/home/user/tmp/text-file.txt.
process_name_t° | String Process name. For example: notepad.
resource_uid_t° String Max length: 64 Resource unique identifier. For

example, S3 Bucket name or EC2
Instance ID.

string_t

Max length: 65,535

UTF-8 encoded byte sequence.

Open Cybersecurity Schema Framework 20

https://www.json.org/

Attribute Base Constraint Description
Type

subnet_t String Max length: 40 Subnet mask in Classless
Inter-Domain Routing (CIDR) notation.
For example 192.168.200.0/24.

datetime_t String Md{4}-\d{2}\d{2]T\d{2}:\ | The user-friendly time format as
d{(23\d{2)(?:.\d+)?[A-Z]?(| defined by REC-3339. For example
?2:[-)(?:08\d{2INd{2)JA-Z | 1985-04-12T23:20:50.527.

0?$

timestamp_t Long The time format is the number of
milliseconds since the Epoch
01/01/1970 00:00:00 UTC. For
example 1618524549901.

url_t° String Uniform Resource Locator (URL)

string. For Example:
http://www.example.com/download/trou

ble.exe.

username_t° String User name. For example: jonn doe.

Appendix C - Schema Construction and Extension

The OCSF schema repository can be found at https://gith m f f-schema.

The repository is structure is as follows:

categories.json
dictionary. json
ocsf-schema
ocsf-schema/enums
ocsf-schema/events
ocsf-schema/extensions
ocsf-schema/includes
ocsf-schema/objects

ocsf-schema/profiles

Open Cybersecurity Schema Framework 21

https://www.rfc-editor.org/rfc/rfc3339.html
https://github.com/ocsf/ocsf-schema

ocsf-schema/templates

The following is extracted from CONTRIBUTING.md:

How do | add an event_class?

1. Determine all the attributes (including fields and objects) you would want to add in the
event class

2. Check the dictionary and the /objects folder, many of your desired attributes may already
be present.

3. Define the missing attributes » Adding a field, Adding an object.

4. Determine which category you would want to add your event_class in, note it’'s name

5. Create a new file » <event class name.json> inside the category specific subfolder in
the /events folder. Template available here

6. Define the event class itself » Adding an event class.

7. Finally, verify the changes are working as expected in your local ocsf-server.

Adding/Modifying an attribute

1. All the available attributes - fields & objects in OCSF are and will need to be defined
in the attribute dictionary, the dictionary.json file and /objects folder if defining an object.

2. Determine if a new attribute is required for your change, it might already be defined in the
attribute dictionary and/or the /objects folder.

3. Before adding a new attribute, review OCSF grammar & conventions || TASK - Add a
grammar.md

How to define a field in the dictionary?

To add a new field in OCSF, you need to define it in the dictionary.json file as described below.

Sample entry in the dictionary -

"uid":

{
"caption": "Unique ID", // "previously name"
"description": "The unique identifier. See specific usage.",
"type": "string t"

Open Cybersecurity Schema Framework 22

https://github.com/ocsf/ocsf-schema/blob/a46b6df1d60ad052739caa96c29109e9b233ef82/CONTRIBUTING.md
https://github.com/ocsf/ocsf-schema/blob/main/dictionary.json
https://github.com/ocsf/ocsf-schema/tree/main/objects
https://github.com/ocsf/ocsf-schema/tree/main/events
https://github.com/ocsf/ocsf-schema/blob/main/templates/event_class_name.json
https://github.com/ocsf/ocsf-server
https://github.com/ocsf/ocsf-schema/blob/main/dictionary.json
https://github.com/ocsf/ocsf-schema/tree/main/objects
https://github.com/ocsf/ocsf-schema/tree/main/objects
https://github.com/ocsf/ocsf-schema/blob/main/dictionary.json

Choose a unique field you want to add, uid in the example above and populate it as described
below.

1. caption = Add a user friendly name to the field.
2. description = Add concise description to define the attributes.

i. Note that field descriptions can be overridden in the event class/object,
therefore if it's a common field (like name, label, uid etc) feel free to add a generic
description, specific descriptions can be added in the event class/object
definition. For example,

ii. A generic definition of uid in the dictionary -

Q. uid:The unique identifier. See specific usage.
iii. Specific description of uid in the vulnerability object -
a. uid:Unique Identifier/s of the reported vulnerability. e.g.
CVE ID/s"
3. type = Review OCSF data_types and ensure you utilize appropriate types while defining
new fields. | not allowed to change...

i. Allthe available data_types can be accessed here || TASK - Create a
data_types.md file in the repo

ii. They are also accessible in your local instance of the ocsf-server -
http://localhost:8000/data_types

4. is array = This a boolean key:value pair that you would need to add if the field you are
defining is an array.

i. eg. "is array": true

How to define an object?

1. All the available objects need to be defined as individual field entries in the dictionary,
the dictionary.json file and as distinct .json files in the /objects folder.

2. Review existing Objects, determine if a modification of the existing object would be
sufficient or if there’s a need for a completely new object.

A sample .json object file,

"caption": "Vulnerability Details", // "previously name"
"name": "vulnerability", // "previously type"

"description": "The vulnerability object describes details related to the
observed vulnerability.",

"extends": "object",
"attributes": {

"desc": |

Open Cybersecurity Schema Framework 23

http://localhost:8000/data_types
https://github.com/ocsf/ocsf-schema/blob/main/dictionary.json
https://github.com/ocsf/ocsf-schema/tree/main/objects

"description": "The description of the wvulnerability",

"requirement": "recommended"

b
"kb _articles": {

"requirement": "optional"

Create a new file » <object name.json> in /objects folder.
Use the template available here, to get started with .json file definition.
caption = Add a user friendly name to the object
description = Add a concise description to define the object.
extends = Ensure the value is object (All objects in OCSF extend a base definition of
object)
name = Add a unique name of the object
attributes = Add the attributes that you want to define in the object,
i. requirement = For each attribute ensure you add a requirement value. Valid

aos WS

N o

values are optional, required, reserved, recommended

Sample entry in the dictionary,

"vulnerability":
{
"caption": "Vulnerability", // "previously name"
"description": "The vulnerability object describes details related to the

observed vulnerability",

"type": "vulnerability"

Choose a unique object you want to add, vulnerability in the example above and populate it
as described below.

1. caption = Add a user friendly name to the object
2. description = Add a concise description to define the object.

Open Cybersecurity Schema Framework 24

https://github.com/ocsf/ocsf-schema/tree/main/objects
https://github.com/ocsf/ocsf-schema/blob/main/templates/object_name.json

3. type = Add the type of the object you are defining.
4. is array = This a boolean key:value pair that you would need to add if the object you
are defining is an array.

i. eg. "is array": true

Adding/Modifying an event class

1. All the available Event Classes are defined as .json files in the /events folder.
2. Review existing Event Classes, determine if a modification of the existing class would be
sufficient or if there’s a need for a completely new event_class.
3. To define a new class,
i. Create anew file » <event class name.json> inside the category specific
subfolder in the /events folder.
ii. Use the template available here, to get started with the .json definition.
iii. uid = Select an integer in the range 0 - 99. Ensure the integer is unique within the
category.
a. Note: Without uid, an event_class won’t be visible in the ocsf-server.
iv. caption = Add a user friendly name to the event_class.
V. description = Add a concise description to define the attributes.
vi. name = Add a unique name of the event_class. Ensure it matches the file name to
maintain consistency.
Vii. extends =+ Ensure the value is base event.
viii. attributes = Add the attributes that you want to define in the event_class,
a. group = For each attribute ensure you add a group value. Valid values are
-classification, context, occurrence, primary
b. requirement = For each attribute ensure you add a requirement value.

Valid values are optional, required, reserved, recommended

Extending the Schema

To extend the schema create a new directory in the schema/extensions directory. The directory
structure is the same as the top level schema directory and it may contain the following files and
subdirectories:

categories.json Create it to define a new event category to reserve a range of class
IDs.

dictionary.json Create it to define new attributes.

events/ Create it to define new event classes.

Open Cybersecurity Schema Framework 25

https://github.com/ocsf/ocsf-schema/tree/main/events
https://github.com/ocsf/ocsf-schema/tree/main/events
https://github.com/ocsf/ocsf-schema/blob/main/templates/event_class_name.json

objects/ Create it to define new objects.

More information can be found at extending-existing-class.md.

Open Cybersecurity Schema Framework 26

https://github.com/ocsf/ocsf-schema/blob/a46b6df1d60ad052739caa96c29109e9b233ef82/doc/extending-existing-class.md

